ARTIFICIAL INTELLIGENCE CERTIFICATION AUTHORITIES

Artificial Intelligence Course Features

ARTIFICIAL INTELLIGENCE LEAD MENTORS

ARTIFICIAL INTELLIGENCE COURSE FEE IN ALLAHABAD

Live Virtual

Instructor Led Live Online

154,000
101,745

  • IABAC® & DMC Certification
  • 9-Month | 780 Learning Hours
  • 100-Hour Live Online Training
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

92,000
60,795

  • Self Learning + Live Mentoring
  • IABAC® & DMC Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Classroom

In - Person Classroom Training

154,000
116,445

  • IABAC® & DMC Certification
  • 9-Month | 780 Learning Hours
  • 100-Hour Classroom Sessions
  • 10 Capstone & 1 Client Project
  • Cloud Lab Access
  • Internship + Job Assistance

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING ARTIFICIAL INTELLIGENCE ONLINE CLASSES IN ALLAHABAD

BEST ARTIFICIAL INTELLIGENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR ARTIFICIAL INTELLIGENCE COURSE

Why DataMites Infographic

SYLLABUS OF AI COURSE IN ALLAHABAD

MODULE 1 : DATA SCIENCE COURSE INTRODUCTION 

  • CDS Course Introduction
  • 3 Phase Learning
  • Learning Resources
  • Assessments & Certification Exams
  • DataMites Mobile App
  • Support Channels

MODULE 2 : DATA SCIENCE ESSENTIALS 

  • Introduction to Data Science
  • Evolution of Data Science
  • Data Science Terminologies
  • Data Science vs AI/Machine Learning
  • Data Science vs Analytics

MODULE3 : DATA SCIENCE DEMO 

  • Business Requirement: Use Case
  • Data Preparation
  • Machine learning Model building
  • Prediction with ML model
  • Delivering Business Value

MODULE 4 : ANALYTICS CLASSIFICATION 

  • Types of Analytics
  • Diagnostic Analytics
  • Predictive Analytics
  • Prescriptive Analytics

MODULE 5 : DATA SCIENCE AND RELATED FIELDS 

  • Introduction to AI
  • Introduction to Computer Vision
  • Introduction to Natural Language Processing
  • Introduction to Reinforcement Learning
  • Introduction to GAN
  • Introduction to  Generative Passive Models

MODULE 6 : DATA SCIENCE ROLES & WORKFLOW

  • Data Science Project workflow
  • Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
  • Data Science Project stages

MODULE 7 : MACHINE LEARNING INTRODUCTION

  • What Is ML? ML Vs AI
  • ML Workflow, Popular ML Algorithms
  • Clustering, Classification And Regression
  • Supervised Vs Unsupervised

MODULE 8 : DATA SCIENCE INDUSTRY APPLICATIONS 

  • Data Science in Finance and Banking
  • Data Science in Retail
  • Data Science in Health Care
  • Data Science in Logistics and Supply Chain
  • Data Science in Technology Industry
  • Data Science in Manufacturing
  • Data Science in Agriculture

MODULE 1 : PYTHON BASICS 

  • Introduction of python
  • Installation of Python and IDE
  • Python objects
  • Python basic data types
  • Number & Booleans, strings
  • Arithmetic Operators
  • Comparison Operators
  • Assignment Operators
  • Operator’s precedence and associativity

MODULE 2 : PYTHON CONTROL STATEMENTS 

  • IF Conditional statement
  • IF-ELSE
  • NESTED IF
  • Python Loops basics
  • WHILE Statement
  • FOR statements
  • BREAK and CONTINUE statements

MODULE 3 : PYTHON DATA STRUCTURES 

  • Basic data structure in python
  • String object basics and inbuilt methods
  • List: Object, methods, comprehensions
  • Tuple: Object, methods, comprehensions
  • Sets: Object, methods, comprehensions
  • Dictionary: Object, methods, comprehensions

MODULE 4 : PYTHON FUNCTIONS 

  • Functions basics
  • Function Parameter passing
  • Iterators
  • Generator functions
  • Lambda functions
  • Map, reduce, filter functions

MODULE 5 : PYTHON NUMPY PACKAGE 

  • NumPy Introduction
  • Array – Data Structure
  • Core Numpy functions
  • Matrix Operations

MODULE 6 : PYTHON PANDAS PACKAGE 

  • Pandas functions
  • Data Frame and Series – Data Structure
  • Data munging with Pandas
  • Imputation and outlier analysis

MODULE 1 : OVERVIEW OF STATISTICS 

  • Descriptive And Inferential Statistics
  • Basic Terms Of Statistics
  • Types Of Data

MODULE 2 : HARNESSING DATA 

  • Random Sampling
  • Sampling With Replacement And Without Replacement
  • Cochran's  Minimum Sample Size
  • Simple Random Sampling
  • Stratified Random Sampling
  • Cluster Random Sampling
  • Systematic Random Sampling
  • Biased Random Sampling Methods
  • Sampling Error
  • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

  • Exploratory Data Analysis Introduction
  • Measures Of Central Tendencies: Mean, Median And Mode
  • Measures Of Central Tendencies: Range, Variance And Standard Deviation
  • Data Distribution Plot: Histogram
  • Normal Distribution
  • Z Value / Standard Value
  • Empherical Rule  and Outliers
  • Central Limit Theorem
  • Normality Testing
  • Skewness & Kurtosis
  • Measures Of Distance: Euclidean, Manhattan And MinkowskiDistance

MODULE 4 : HYPOTHESIS TESTING 

  • Hypothesis Testing Introduction
  • P- Value, Confidence Interval
  • Parametric Hypothesis Testing Methods
  • Hypothesis Testing Errors : Type I And Type Ii
  • One Sample T-test
  • Two Sample Independent T-test
  • Two Sample Relation T-test
  • One Way Anova Test

MODULE 5 : CORRELATION AND REGRESSION 

  • Correlation Introduction
  • Direct/Positive Correlation
  • Indirect/Negative Correlation
  • Regression
  • Choosing Right Method

MODULE 1: MACHINE LEARNING INTRODUCTION 

  • What Is ML? ML Vs AI
  • ML Workflow, Popular ML Algorithms
  • Clustering, Classification And Regression
  • Supervised Vs Unsupervised

MODULE 2: PYTHON NUMPY & PANDAS PACKAGE 

  • NumPy & Pandas functions
  • Array – Data Structure
  • Core Numpy functions
  • Matrix Operations
  • Data Frame and Series – Data Structure
  • Data munging with Pandas
  • Imputation and outlier analysis

MODULE 3: VISUALIZATION WITH PYTHON 

  • Visualization Packages (Matplotlib)
  • Components Of A Plot, Sub-Plots
  • Basic Plots: Line, Bar, Pie, Scatter
  • Advanced Python Data Visualizations

MODULE 4: ML ALGO: LINEAR REGRESSSION 

  • Introduction to Linear Regression
  • How it works: Regression and Best Fit Line
  • Modeling and Evaluation in Python

MODULE 5: ML ALGO: KNN 

  • Introduction to KNN
  • How It Works: Nearest Neighbor Concept
  • Modeling and Evaluation in Python

MODULE 6: ML ALGO: LOGISTIC REGRESSION 

  • Introduction to Logistic Regression
  • How it works: Classification & Sigmoid Curve
  • Modeling and Evaluation in Python

MODULE 7: PRINCIPLE COMPONENT ANALYSIS (PCA) 

  • Building Blocks Of PCA
  • How it works: Finding Principal Components
  • Modeling PCA in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING 

  • Understanding Clustering (Unsupervised)
  • K Means Algorithm
  • How it works : K Means theory
  • Modeling in Python

MODULE 1: MACHINE LEARNING INTRODUCTION 

  • What Is ML? ML Vs AI
  • ML Workflow, Popular ML Algorithms
  • Clustering, Classification And Regression
  • Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSION 

  • Introduction to Linear Regression
  • How it works: Regression and Best Fit Line
  • Modeling and Evaluation in Python

MODULE 3: ML ALGO: LOGISTIC REGRESSION 

  • Introduction to Logistic Regression
  • How it works: Classification & Sigmoid Curve
  • Modeling and Evaluation in Python

MODULE 4: ML ALGO: KNN 

  • Introduction to KNN
  • How It Works: Nearest Neighbor Concept
  • Modeling and Evaluation in Python

MODULE 5: ML ALGO: K MEANS CLUSTERING 

  • Understanding Clustering (Unsupervised)
  • K Means Algorithm
  • How it works: K Means theory
  • Modeling in Python

MODULE 6: PRINCIPLE COMPONENT ANALYSIS (PCA) 

  • Building Blocks Of PCA
  • How it works: Finding Principal Components
  • Modeling PCA in Python

MODULE 7: ML ALGO: DECISION TREE 

  • Random Forest Ensemble technique
  • How it works: Bagging Theory
  • Modeling and Evaluation in Python

MODULE 8 : ML ALGO: NAÏVE BAYES 

  • Introduction to Naive Bayes
  • How it works: Bayes' Theorem
  • Naive Bayes For Text Classification
  • Modeling and Evaluation in Python

MODULE 9: GRADIENT BOOSTING, XGBOOST 

  • Introduction to Boosting and XGBoost
  • How it works: weak learners' concept
  • Modeling and Evaluation of in Python

MODULE 10: ML ALGO: SUPPORT VECTOR MACHINE  (SVM) 

  • Introduction to SVM
  • How It Works: SVM Concept, Kernel Trick
  • Modeling and Evaluation of SVM in Python

MODULE 11: ARTIFICIAL NEURAL NETWORK (ANN) 

  • Introduction to ANN
  • How It Works: Back prop, Gradient Descent
  • Modeling and Evaluation of ANN in Python

MODULE 12: ADVANCED ML CONCEPTS 

  • Adv Metrics (Roc_Auc, R2, Precision, Recall)
  • K-Fold Cross validation
  • Grid And Randomized Search CV In Sklearn
  • Imbalanced Data Set : Smote Technique
  • Feature Selection Techniques

MODULE 1: TIME SERIES FORECASTING - ARIMA 

  • What is Time Series?
  • Trend, Seasonality, cyclical and random
  • Autoregressive Model (AR)
  • Moving Average Model (MA)
  • Stationarity of Time Series
  • ARIMA Model
  • Autocorrelation and AIC 

MODULE 2: FEATURE ENGINEERING 

  • Introduction to Features Engineering
  • Transforming Predictors
  • Feature Selection methods
  • Backward elimination technique
  • Feature importance from ML modeling

MODULE 3: SENTIMENT ANALYSIS 

  • Introduction to Sentiment Analysis
  • Python packages: TextBlob, NLTK
  • Case study: Twitter Live Sentiment Analysis

MODULE 4: REGULAR EXPRESSIONS WITH PYTHON 

  • Regex Introduction
  • Regex codes
  • Text extraction with Python Regex

MODULE 5: ML MODEL DEPLOYMENT WITH FLASK 

  • Introduction to Flask
  • URL and App routing
  • Flask application – ML Model deployment

MODULE 6: ADVANCED DATA ANALYSIS WITH MS EXCEL 

  • MS Excel core Functions • Pivot Table
  • Advanced Functions (VLOOKUP, INDIRECT..)
  • Linear Regression with EXCEL
  • Goal Seek Analysis
  • Data Table
  • Solving Data Equation with EXCEL
  • Monte Carlo Simulation with MS EXCEL

MODULE 7: AWS CLOUD FOR DATA SCIENCE

  • Introduction of cloud
  • Difference between GCC, Azure,AWS
  • AWS Service ( EC2 and S3 service)
  • AWS Service (AMI), AWS Service (RDS)
  • AWS Service (IAM), AWS (Athena service)
  • AWS (EMR), AWS, AWS (Redshift)
  • ML Modeling with AWS Sage Maker 

MODULE 8: AZURE FOR DATA SCIENCE 

  • Introduction to AZURE ML studio
  • Data Pipeline and ML modeling with Azure
  • MODULE 1: DATABASE INTRODUCTION 

    • DATABASE Overview
    • Key concepts of database management
    • CRUD Operations
    • Relational Database Management System
    • RDBMS vs No-SQL (Document DB)

    MODULE 2: SQL BASICS 

    • Introduction to Databases
    • Introduction to SQL
    • SQL Commands
    • MY SQL  workbench installation
    • Comments • import and export dataset

    MODULE 3: DATA TYPES AND CONSTRAINTS 

    • Numeric, Character, date time data type
    • Primary key, Foreign key, Not null
    • Unique, Check, default, Auto increment

    MODULE 4: DATABASES AND TABLES (MySQL) 

    • Create database
    • Delete database
    • Show and use databases
    • Create table, Rename table
    • Delete table, Delete  table records
    • Create new table from existing data types
    • Insert into, Update records
    • Alter table

    MODULE 5: SQL JOINS 

    • Inner join
    • Outer join
    • Left join
    • Right join
    • Cross join
    • Self join

    MODULE 6: SQL COMMANDS AND CLAUSES 

    • Select, Select distinct
    • Aliases, Where clause
    • Relational operators, Logical
    • Between, Order by, In
    • Like, Limit, null/not null, group by
    • Having, Sub queries

    MODULE 7: DOCUMENT DB/NO-SQL DB 

    • Introduction of Document DB
    • Document DB vs SQL DB
    • Popular Document DBs
    • MongoDB basics
    • Data format and Key methods
    • MongoDB data management

MODULE 1: GIT  INTRODUCTION 

  • Purpose of Version Control
  • Popular Version control tools
  • Git Distribution Version Control
  • Terminologies
  • Git Workflow
  • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

  • Git Repo Introduction
  • Create New Repo with Init command
  • Copying existing repo
  • Git user and remote node
  • Git Status and rebase
  • Review Repo History
  • GitHub Cloud Remote Repo

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

  • Code commits
  • Pull, Fetch and conflicts resolution
  • Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

  • Organize code with branches
  • Checkout branch
  • Merge branches

MODULE 5: UNDOING CHANGES 

  • Editing Commits
  • Commit command Amend flag
  • Git reset and revert

MODULE 6: GIT WITH GITHUB AND BITBUCKET 

  • Creating GitHub Account
  • Local and Remote Repo
  • Collaborating with other developers
  • Bitbucket Git account

MODULE 1: BIG DATA INTRODUCTION 

  • Big Data Overview
  • Five Vs of Big Data
  • What is Big Data and Hadoop
  • Introduction to Hadoop
  • Components of Hadoop Ecosystem
  • Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE 

  • HDFS – Big Data Storage
  • Distributed Processing with Map Reduce
  • Mapping and reducing  stages concepts
  • Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
  • Hands-on Map Reduce task

MODULE 3: PYSPARK FOUNDATION 

  • PySpark Introduction
  • Spark Configuration
  • Resilient distributed datasets (RDD)
  • Working with RDDs in PySpark
  • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

  • Introducing Spark SQL
  • Spark SQL vs Hadoop Hive
  • Working with Spark SQL Query Language

MODULE 5: MACHINE LEARNING WITH SPARK ML 

  • Introduction to MLlib Various ML algorithms supported by MLib
  • ML model with Spark ML
  • Linear regression
  • logistic regression
  • Random forest

MODULE 6: KAFKA and Spark 

  • Kafka architecture
  • Kafka workflow
  • Configuring Kafka cluster
  • Operations

MODULE 1: BUSINESS INTELLIGENCE INTRODUCTION 

  • What Is Business Intelligence (BI)?
  • What Bi Is The Core Of Business Decisions?
  • BI Evolution
  • Business Intelligence Vs Business Analytics
  • Data Driven Decisions With Bi Tools
  • The Crisp-Dm Methodology

MODULE 2: BI WITH TABLEAU: INTRODUCTION 

  • The Tableau Interface
  • Tableau Workbook, Sheets And Dashboards
  • Filter Shelf, Rows And Columns
  • Dimensions And Measures
  • Distributing And Publishing

MODULE 3 : TABLEAU: CONNECTING TO DATA SOURCE 

  • Connecting To Data File , Database Servers
  • Managing Fields
  • Managing Extracts
  • Saving And Publishing Data Sources
  • Data Prep With Text And Excel Files
  • Join Types With Union
  • Cross-Database Joins
  • Data Blending
  • Connecting To Pdfs

MODULE 4 : TABLEAU : BUSINESS INSIGHTS 

  • Getting Started With Visual Analytics
  • Drill Down And Hierarchies
  • Sorting & Grouping
  • Creating And Working Sets
  • Using The Filter Shelf
  • Interactive Filters
  • Parameters
  • The Formatting Pane
  • Trend Lines & Reference Lines
  • Forecasting
  • Clustering

MODULE 5 : DASHBOARDS, STORIES AND PAGES 

  • Dashboards And Stories Introduction
  • Building A Dashboard
  • Dashboard Objects
  • Dashboard Formatting
  • Dashboard Interactivity Using Actions
  • Story Points
  • Animation With Pages

MODULE 6 : BI WITH POWER-BI 

  • Power BI basics
  • Basics Visualizations
  • Business Insights with Power BI

MODULE 1: ARTIFICIAL INTELLIGENCE OVERVIEW 

  • Evolution Of Human Intelligence
  • What Is Artificial Intelligence?
  • History Of Artificial Intelligence
  • Why Artificial Intelligence Now?
  • Ai Terminologies
  • Areas Of Artificial Intelligence
  • Ai Vs Data Science Vs Machine Learning

MODULE 2: DEEP LEARNING INTRODUCTION 

  • Deep Neural Network
  • Machine Learning vs Deep Learning
  • Feature Learning in Deep Networks
  • Applications of Deep Learning Networks

MODULE 3: TENSORFLOW FOUNDATION 

  • TensorFlow Installation and setup
  • TensorFlow Structure and  Modules
  • Hands-On: ML modeling with TensorFlow

MODULE 4: COMPUTER VISION INTRODUCTION 

  • Image Basics
  • Convolution Neural Network (CNN)
  • Image Classification with CNN
  • Hands-On: Cat vs Dogs Classification with CNN Network

MODULE 5: NATURAL LANGUAGE PROCESSING (NLP) 

  • NLP Introduction
  • Bag of Words Models
  • Word Embedding
  • Language Modeling
  • Hands-On: BERT  Algorithm

MODULE 6: AI ETHICAL ISSUES AND CONCERNS 

  • Issues And Concerns Around Ai
  • Ai And Ethical Concerns
  • Ai And Bias
  • Ai: Ethics, Bias, And Trust

MODULE 1: NEURAL NETWORKS 

  • Structure of neural networks
  • Neural network - core concepts
  • Feed forward algorithm
  • Backpropagation
  • Building neural network from scratch using Numpy

MODULE 2: IMPLEMENTING DEEP NEURAL NETWORKS 

  • Introduction to neural networks with tf2.X
  • Simple deep learning model in Keras (tf2.X)
  • Building neural network model in TF2.0 for MNIST dataset

MODULE 3: DEEP COMPUTER VISION - CNN 

  • Convolutional neural networks (CNNs)
  • Introduction
  • CNNs with Keras
  • Transfer learning in CNN
  • Style transfer
  • Flowers dataset with tf2.X
  • Examining x-ray with CNN model

MODULE 4 : RECURRENT NEURAL NETWORK 

  • RNN introduction
  • Sequences with RNNs
  • Long short-term memory networks
  • LSTM RNNs and GRU
  • Examples of RNN applications

MODULE 5: NATURAL LANGUAGE PROCESSING (NLP) 

  • Natural language processing
  • Introduction
  • NLP with RNNs
  • Creating model
  • Transformers and BERT
  • State of art NLP and projects

MODULE 6: REINFORCEMENT LEARNING 

  • Markov decision process
  • Fundamental equations in RL
  • Model-based method
  • Dynamic programming model free methods

MODULE 7: DEEP REINFORCEMENT LEARNING 

  • Architectures of deep Q learning
  • Deep Q learning
  • Policy gradient methods

MODULE 8: GENERATIVE ADVERSARIAL NETWORK (GAN) 

  • Gan introduction
  • Core concepts of GAN
  • Building GAN model with TensorFlow 2.X
  • GAN applications

MODULE 9: DEPLOYING DL MODELS IN THE CLOUD (AWS) 

  • Amazon web services (AWS)
  • AWS SageMaker Overview
  • Sage Makers from Data pipeline to deployments
  • Deploying deep learning models WS Sage maker

OFFERED ARTIFICIAL INTELLIGENCE COURSES IN ALLAHABAD

ARTIFICIAL INTELLIGENCE TRAINING REVIEWS

ABOUT ARTIFICIAL INTELLIGENCE TRAINING IN ALLAHABAD

The AI software market is on an incredible trajectory, poised for extraordinary growth in the coming years. Projections indicate that by 2025, the market size is expected to reach a staggering $126 billion, with a remarkable compound annual growth rate (CAGR) of 39.7% from 2020 to 2025. This unprecedented expansion is fueled by the increasing demand for AI-driven solutions across industries. From predictive analytics to natural language processing, AI software is revolutionizing how businesses operate, enabling them to make smarter decisions, automate processes, and unlock new levels of efficiency. The future of AI software is bright, and its potential to transform the world as we know it is simply awe-inspiring.

DataMites offers a comprehensive Artificial Intelligence Course in Allahabad, designed to provide participants with a deep understanding of AI concepts and applications. The course spans 11 months, with a total of 780 learning hours dedicated to mastering the intricacies of AI. The training includes 100 hours of live online sessions, ensuring interactive and engaging learning experiences with expert instructors. Participants will have the opportunity to work on 10 capstone projects and one client project, allowing them to apply their knowledge to real-world scenarios.

In addition to online training, DataMites also provides ON DEMAND artificial intelligence offline courses in Allahabad. These courses cover various specializations within the field of Artificial Intelligence, including Artificial Intelligence Engineering, Artificial Intelligence Expertise, Certified Natural Language Processing (NLP) Expertise, Artificial Intelligence Foundations, and Artificial Intelligence for Managers.

There are several compelling reasons to choose DataMites for Artificial Intelligence Training in Allahabad

  • The institute boasts a team of experienced faculty members, led by Ashok Veda, a renowned expert in the field of AI. 

  • The course curriculum is comprehensive, covering all essential aspects of AI and ensuring a well-rounded education. Upon completion of the training, participants receive globally recognized certifications from prestigious organizations such as IABAC, NASSCOM FutureSkills Prime, and JainX, enhancing their professional credibility. 

  • DataMites offers flexible learning options artificial intelligence training online in Allahabad and ON DEMAND artificail intelligence offline classes in Allahabad, allowing participants to access course materials and complete assignments at their convenience. 

  • The training program includes projects that utilize real-world data, enabling participants to gain practical experience and insights into the application of AI. The institute also facilitates artificial intelligence courses with internship opportunities, providing learners with valuable industry exposure. DataMites provides artificial intelligence training with placement assistance and job references to support participants in launching their careers in AI. 

  • Learners receive hardcopy learning materials and books, enhancing their learning experience. By joining DataMites, participants become part of an exclusive learning community, fostering collaboration and networking opportunities. 

  • The institute's training programs are priced affordably, and scholarships are available to make AI education accessible to a wider audience.

Allahabad, also known as Prayagraj, is a historical and culturally rich city located in Uttar Pradesh, India. It is renowned for its religious significance, hosting the confluence of three sacred rivers, the Ganges, Yamuna, and Saraswati. Allahabad has emerged as an important educational and technological hub, attracting students and professionals from various disciplines. Pursuing Artificial Intelligence Certification in Allahabad offers the advantage of being part of a growing tech ecosystem and gaining exposure to a diverse range of industries and opportunities. The city's vibrant atmosphere, educational institutions, and infrastructure make it an ideal location for individuals seeking AI education and career advancement.

Along with artificial intelligence courses, DataMites also provides machine learning, deep learning, python training, IoT, mlops, data engineer, tableau, data mining, python for data science, data analytics and data science courses in Allahabad.

ABOUT ARTIFICIAL INTELLIGENCE COURSE IN ALLAHABAD

The term "Artificial Intelligence (AI)" refers to the development of intelligent machines that can perform tasks requiring human intelligence. It involves creating algorithms and systems capable of learning, reasoning, perceiving, and making decisions.

There isn't a single individual credited with inventing AI. The field of AI has evolved through the contributions of many researchers and scientists over time, including Alan Turing, John McCarthy, Marvin Minsky, and Arthur Samuel.

Implementing AI offers several advantages, including increased efficiency and productivity, improved accuracy and precision in tasks, enhanced decision-making capabilities, automation of repetitive tasks, better customer experiences, and the potential for innovation and new business opportunities.

The AI Engineer and AI Expert Courses differ in their level of depth and specialization. The AI Engineer Course focuses on building a strong foundation in AI concepts, algorithms, and technologies, with an emphasis on practical implementation. The AI Expert Course delves deeper into advanced AI algorithms, emerging trends, and complex applications, providing specialized knowledge and skills.

Some examples of AI applications include virtual assistants like Siri and Alexa, autonomous vehicles, recommendation systems, fraud detection systems, chatbots, image and speech recognition systems, medical diagnosis, and predictive analytics.

Artificial Intelligence is applied in various areas, including healthcare (diagnosis, drug discovery), finance (fraud detection, risk assessment), transportation (autonomous vehicles, route optimization), customer service (chatbots, virtual assistants), manufacturing (automation, quality control), and many more.

After completing Artificial Intelligence Training in Allahabad, career opportunities may include AI engineer, data scientist, machine learning engineer, AI research scientist, AI consultant, AI project manager, and AI ethicist roles in industries such as healthcare, finance, e-commerce, and technology.

Commonly used technologies in Artificial Intelligence include machine learning algorithms, deep learning frameworks like TensorFlow and PyTorch, natural language processing tools, computer vision libraries, and AI development platforms.

Several companies are prominent in hiring for artificial intelligence jon roles, including tech giants like Google, Microsoft, Amazon, and IBM. Additionally, companies in industries such as healthcare, finance, automotive, and retail are increasingly investing in AI and hiring professionals in this field.

To start a career in artificial intelligence without prior experience, one can begin by acquiring a strong foundation in mathematics, computer science, and programming. They can take online courses or pursue a degree in AI-related fields, work on personal AI projects, participate in Kaggle competitions, and seek internships or entry-level positions to gain practical experience.

To acquire knowledge in Artificial Intelligence in Allahabad, having a background in computer science, mathematics, or a related field is beneficial. Familiarity with programming languages like Python and knowledge of statistics and linear algebra are also useful prerequisites. However, some AI courses may have their own specific prerequisites, so it's advisable to check with the training provider for detailed requirements.

View more

FAQ’S OF ARTIFICIAL INTELLIGENCE TRAINING IN ALLAHABAD

DataMites provides a range of Artificial Intelligence certifications, including AI Engineer Certification, Certified NLP Expert Certification, AI Expert Certification, AI Foundation Certification, and AI for Managers Certification.

Individuals can acquire knowledge in Artificial Intelligence through various methods, including self-study using online resources, textbooks, and tutorials. They can also enroll in AI courses and training programs, pursue degrees or diplomas in AI or related fields, attend workshops and conferences, and engage in practical projects and competitions.

DataMites' AI Engineer Course in Allahabad aims to equip individuals with the skills and knowledge needed to become proficient AI engineers. It covers essential AI concepts, algorithms, and practical implementation techniques, preparing participants to build and deploy AI models in real-world scenarios.

Obtaining an Artificial Intelligence Certification in Allahabad is important as it validates individuals' AI knowledge and skills. It enhances professional credibility, improves job prospects, and demonstrates a commitment to continuous learning and growth in the field.

The duration of DataMites' Artificial Intelligence course in Allahabad varies depending on the chosen course. It offers flexibility with course durations ranging from one month to one year, accommodating different schedules. Weekday and weekend training sessions are available.

To pursue a career as an AI engineer in Allahabad, individuals can follow these steps: develop a strong foundation in mathematics, computer science, and programming; acquire knowledge of AI concepts, algorithms, and technologies; learn programming languages like Python or R commonly used in AI; master machine learning and deep learning techniques; build a portfolio of AI projects; stay updated with the latest advancements and research in AI; and seek job opportunities in Allahabad or explore remote work options in the AI field.

DataMites' Placement Assistance Team provides support to students in connecting with job opportunities in the AI field. They assist with resume building, interview preparation, and job placement guidance, enabling students to leverage their AI skills and secure suitable positions.

Yes, participants can access help sessions offered by DataMites to enhance their understanding of the training topics. These sessions provide additional clarification, guidance, and support to ensure comprehensive grasp of the concepts covered in the training.

Yes, upon successful completion of an Artificial Intelligence course from DataMites, participants receive a Course Completion Certificate. This certificate validates their completion of the training program and adds value to their professional credentials.

DataMites engages experienced trainers who are industry professionals and subject matter experts in Artificial Intelligence. These trainers bring practical knowledge and expertise to deliver high-quality instruction to participants.

DataMites accepts various payment methods for their Artificial Intelligence courses, including online payments through credit cards, debit cards, net banking, and digital wallets. They provide convenient options to accommodate different preferences.

DataMites' Flexi-Pass feature in Allahabad provides participants with flexibility in attending training sessions. It offers multiple batch options, allowing individuals to choose schedules that align with their availability and preferences.

The policy for missed sessions during the Artificial Intelligence training at DataMites in Allahabad may vary depending on the specific course and batch. Participants are recommended to refer to DataMites' guidelines or contact their support team for information on the missed session policy.

DataMites stands out as a preferred choice for Artificial Intelligence courses in Allahabad due to various factors, including experienced trainers who are industry professionals, comprehensive course curriculum covering different AI aspects, hands-on learning approach with practical projects, flexibility in batch options and schedules, placement assistance for job opportunities, positive reputation and reviews from past participants, and certification options to validate knowledge and enhance professional credentials.

Specific document requirements for the training session at DataMites may vary based on the program and location. It is advisable to contact DataMites directly for detailed information regarding any specific documents needed for the training session in Allahabad.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

OTHER AI TRAINING CITIES IN INDIA

Global ARTIFICIAL INTELLIGENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog