CERTIFICATION AUTHORITIES

Data Science Course Features

CERTIFIED DATA SCIENTIST COURSE

The “Certified Data Science” course lets you gain proficiency in Data Science. It is a high-level data science notion designed aiming to cover all the aspects of data science with core concepts. Data Science is one of the most happening fields in business today, creating a higher number of career opportunities. The certifications from The certifications from DataMites® are accredited by internationally recognized and acclaimed bodies IABAC® (International Association of Business and Analytics Certification), JAINx University, and NASSCOM® Future Skills.The course has inclusive realms, namely Statistics, Machine Learning/ Programing/Data Skills, and Business Domain knowledge; covering all the mains of the Data Science helps you to achieve a solid grip over it.

The Certified Data Scientist Course is a career-oriented program for beginners and intermediate learners in the field of data science, designed to impart a strong foundation of data science with statistics, maths, python, and machine learning knowledge. Also includes 2 hands-on Data Science case studies, enabling trainees not only to understand the core concepts but also to gain practical knowledge, thereby boosting confidence to pursue further knowledge in the field of Data Science.

We provide 8 monthly Certified Data Scientist Courses with both Certified Data Scientist Online Courses and Certified Data Scientist Classroom Courses that would be imparted within a three-phase learning method. 

Phase 1 = It’s time to get prepared for the course to come, candidates would be provided with self-study videos and books of high quality to enable an excellent grasp of the curriculum as a whole.

Phase 2 = The primary stage of Live Intensive training along with hands-on capstone projects and after the training, you will receive certifications including the IABAC® Certification, NASSCOM® FutureSkills Certification, and JAINx Certification.

Phase 3 = Projects, Internships and Job ready Program.

The Certified Data Scientist Course offers a wide-ranging idea of Data Science to those interested to dive into the Data Science domain. Our CDS Training is for 8 Months. DataMites has trained over 50,000 learners with the aid of our 50+ elite and professional faculties.

The course is a complete pack with detailed learning of 9 courses:

  1. Python Foundation - Python Basics, Python Control Statements, Python Data Structures, Python Functions, Python Numpy Package, and Python Panda Package.

  2.  Data Science Foundation - Data Science Essentials, Data Engineering Foundation, Python for Data Science, Visualization with Python, R Language Essentials, Statistics, and Machine Learning Introduction.

  3.  Machine Learning Expert - Machine Learning Introduction, ML Algo: Logistic Regression, ML Algo: KNN, ML Algo: K Means Clustering, Principle Component Analysis(PCA), ML Algo: Decision Tree, ML Algo: Naive Bayes, Gradient Boosting & XGBOOST, ML Algo: Support Vector Machine(SVM), Artificial Neural Network (ANN) and Advanced ML Concepts.

  4.  Advanced Data Science - Time Series Forecasting - ARIMA, Feature Engineering, Sentiment Analysis, Regular Expressions with Python, ML Model Deployment with Flask, Advanced Data Analysis with MS Excel, AWS Cloud for Data Science, Azure for Data Science. 

  5. Version Control with Git - GIT Introduction, GIT Repository & GitHub, Commits, Pull, Fetch & Push, Tagging, Branching & Merging, Undoing Changes, and GIT with GitHub & Bitbucket.

  6. Database - SQL and MongoDB - Database Introduction, SQL Basics, Data Types & Constraints, Database & Tables(MySQL), SQL Joins, SQL Commands & Clauses, Document DB/NO-SQL DB.

  7. Big Data Foundation - Big Data Introduction, HDFS & MAP Reduce, PySpark Foundation, Spark SQL & HADOOP Hive, Machine Learning with Spark ML, Kafka & Spark.

  8. Certified BI Analyst - Business Intelligence Introduction, BI with Tableau: Introduction, Tableau: Connecting to Data Source, Tableau: Business Insights, Dashboards, Stories & Pages, BI with Power BI.

  9. Artificial Intelligence Foundation - Artificial Intelligence Overview, Deep Learning Introduction, TensorFlow Foundation, Computer Vision Introduction, Natural Language Processing(NLP), and AI Ethical Issues & Concerns.

The Certified Data Scientist course is specifically sketched out for beginners as well as intermediate learners who are chipping in to the much happening world of data science. DataMites CDS Program is a career-oriented one fabricated to instil a strong bedrock of Data Science and everything related to it. The course curriculum would cover statistics, maths and python alongside ML knowledge. CDS is an 8-month job-ready program that encompasses 700+ hours of learning. You will be given 20 Capstone Projects and 1 Client Project, Model Deployment in the Cloud, and an Internship Experience! Sounds out of the world? 

Former US Chief Data Scientist, D J Patil said that “A Data Scientist is that unique blend of skills that can both unlock the insights of data and tell a fantastic story via the data.”

Data science is a very vast topic with each spectrum requiring the data to be dealt with in a unique way. Data Science is the current ruling technology that has conquered industries around the world due to the tremendous expansion of data and the increasing necessity for organisations to rely on data for decision-making, bringing the fourth industrial revolution to everyone's doorstep internationally.

How well do you know Data Science?

As claimed by Grandviewresearch.com, the international data science market size was of USD 3.93 billion value in 2019 and this number is foreseen to reach a compound annual growth rate of 26.9% from 2020 to 2027.

Freshers, software professionals, and analytic interested applicants can benefit from Datamites' cost-effective, high-quality, and real-time training courses. It is unavoidable in this era of technological eruption to have sufficient knowledge and skills to operate the rapidly evolving technology. The route is paved by technology. We have the ability to master the field if we are well-versed in it.

 Are you looking for the Best Data Science Training Institute? You are certainly where you ought to be! DataMites is paving the way to becoming the most prestigious training institute. We render comprehensive training in Data Science and related fields in India, the UK, the USA, Saudi Arabia, UAE, South Africa, the Philippines and more! DataMites provides real-time, qualitative training at affordable pricing. At DataMites, we’re proud of the fact that we’ve surpassed the 50-thousand-learner mark. IABAC- International Association of Business Analytics Certification, NASSCOM, and Jain University - being our accreditation partners have global recognition. DataMites provide encyclopaedic training imparted by industry experts to mould you to be a crackerjack in those subjects that rule the world. Getting DataMites training is unquestionably the best move you can make. 

We provide you with expertized training thereby instilling in you all the skills you would need to get one step closer to achieving your dream job. Data scientists and analysts will be the most significant rising vocation in the world by 2022, according to the World Economic Forum

Datamites offers flexible learning options starting from Classroom Certified Data Scientist Training, Online Certified Data Scientist Training to Exceptional Recorded Sessions

DataMites Certified Data Scientist Course Fee ranges from 161.00 USD to 1180.63 USD as per your preferred choice of learning. You can always check in on your desired course and find out the course fee for the same.

DataMites Highlights:

  1. Course Regarded as the ‘Finest Course in Data Science’.

  2. Global Recognition - Accreditations from IABAC, Jain University, and NASSCOM.

  3. Network of 25,000+ Alumni: The largest alumni network for the CDS Course. 

  4. Expert Training - Elite Faculty with relevant research and coaching experience

  5. Course updated in accordance with market demands - learning process to support lean learning.
  6. Real-time Projects and Internships

  7. 100% Job Ready Assistance

Still in Doubt about Data Science?

According to the US Bureau of Labor Statistics, there will be 11.5 million employment in data science and analytics by 2026 - that is roughly five years from now.

Data Science is a rewarding career. At a time when employees are getting pink slips, pay cuts, and laid off, Data Science is one field that’s welcoming talent. You will not just have an authoritative role in your business or organization but receive good paychecks and enjoy a perfect work-life balance. DataMites also provides Data Science Foundation, Diploma in Data Science, Data Science for Managers, Data Science for Associates along with Certified Data Scientist Training!

Data Science Courses are your ticket to the city's top-tier IT systems; becoming a Data Scientist has never been so simple. Get upskilled for a profitable career path by enrolling in Certified Data Scientist Training!

DATA SCIENCE LEAD MENTORS

CERTIFIED DATA SCIENTIST COURSE Training Cost

Live Virtual

Instructor Led Live Online

1,810
1,133

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Live Online Training
  • 25 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

1,260
723

  • Self Learning + Live Mentoring
  • IABAC® & NASSCOM® Certification
  • 1 Year Access To Elearning
  • 25 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Leaner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

ONLINE TRAINING SCHEDULES

CERTIFIED DATA SCIENTIST COURSE Certifications

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

client company images not display
client company images not display
×
×
×

Why Datamites

Why DataMites Infographic

Description

DataMites™ Certified Data scientist is designed to provide a right blend of all four facets of Data Science

  • These four facets form four pillars for the data science field. They are 1. Programing 2. Statistics 3. Machine Learning 4. Business Knowledge.
  • The course is mainly focussed on Python for core data science programming, it also includes R as necessary to enable professionals working in R.
  • Statistics are covered as required for a Data Scientist, you may find a detailed syllabus in syllabus tab.
  • Machine Learning is the main tool kit for Data Science in predicting classification or regression.
  • This course courses all popular ML algorithms as detailed in the syllabus tab.
  • This course allows candidates to obtain an in-depth knowledge by laying a strong foundation and covering all the latest data science topics.
  • The increasing demand curve for data science professionals to manage the large set of data in various organizations providing millions of job opportunities in global markets.
  • The knowledge gained through this course along with IABAC™ certificate surely helps you to become a data science professional.
  • After successful completion of this “Certified Data scientist” course, you should have
  • Gained a better knowledge of the entire Data Science project workflow.
  • Understand key concepts of statistics
  • Gained hands-on knowledge of popular Machine learning algorithms
  • In-depth knowledge of Data Mining, Data forecasting, and Data Visualization.
  • Able to create a business case for a Data Science project
  • Deliver end to end data science projects to customer

This course comes as a perfect package of required Data Science skills including programming, statistics and Machine Learning. If you aspire to be a Data Science professional, this course can immensely help you to reach your goal.

Data science is the hottest field in the market as on today. Be it a small company or an MNC, they need a Data scientist to manage their large pool of data.

  • High demand for data scientists with only a few qualified people to hire
  • High salaries, nearly twice of an average software engineer as per Glassdoor report
  • This course not only designed to enable you for new career opportunities but also allows you to apply the new-age skills in your current work and become valuable in your current role.
  • Be assured that you are entering the future of data science much earlier to grab those wonderful opportunities arising from this biggest need in the business world.

This course “Certified Data scientist” is not restricted to any specific domain.

  • Fresh Graduates or students from any discipline can choose this course to obtain better job opportunities in this most demanding data science field
  • Working professionals looking to change their domain to data science field.
  • Highly recommended for those who are aspiring jobs that mainly revolves around data analytics and machine learning
  • Project managers aspiring to switch to manage Data Science projects

DataMites™ is the global institute for Data Science accredited by International Association of Business Analytics Certifications (IABAC). DataMites provides flexible learning options from Classroom training, Live Online to high quality recorded sessions

The 6 Key reasons to choose Data Mites™

IABAC™ Accredited

  • Globally reputed certification
  • Syllabus Aligned with IABAC global market standards

Elite Faculty & Mentors

  • Best in industry faculty from IIMs
  • Course structured by Professors in Data Science from top universities
  • Ensures high quality learning experience

Learning Approach

  • Learning through case study approach
  • Theory → Hands On → Case Study → Project → Model Deployment

10+ Industry Projects

  • 10+ Industry related projects
  • Enabling candidates to gain real time skills, also boosting confidence for real challenges

PAT (Placement Assistance Team)

  • Dedicated PAT (Placement assistanceTeam)
  • Resume assist service
  • Mapping candidates to verified jobs by PAT team
  • Supporting in Interview preparation

24x7 Cloud Lab for ONE year

  • High capacity data science cloud lab
  • All Machine Learning python and R scripts on cloud lab for quick reference
  • Enable participants to practice Data Science even with their mobile phones through cloud lab

Technical skills like data analysis, statistical knowledge, data storytelling, communication, and problem-solving would be advantageous for learning DataScience. 

CDS Course is designed for data science freshers who wish to mark their grades and conquer the world of Data Science.

The Certified Data Scientist Course fee is:

  • The USA - 1171.73 USD

        Discounted price - 790 USD

  • India - 88,000 INR 

        Discounted price - 59,878 INR

  • Europe - 1031.40 Euro 

        Discounted price - 790 Euro

At DataMites you will have CDS training for a period of 8 months.

Yes, we have a dedicated Placement Assistance Team (PAT) who will provide you with placement facilities after the completion of the course.

As per Glassdoor: 

  • The national average Data Scientist salary in India is 10,00,000 per year.

        The Highest Data Scientist Salary in India - 23,00,000 per year

        The Lowest Data Scientist Salary in India - 5,00,000 per year

  • The national average Data Scientist salary in the United States is $1,17,212 USD per annum.

  • A data scientist in the UK earns an average salary of £52,052 a year.

  • The salary for a data scientist in Canada is CA$96,280 per annum.

  • A data scientist's salary in Australia is A$112,979 a year, per Indeed.com.

  • A data scientist in Germany earns an average salary of €55,443 a year. (Payscale)

  • The national average Data Scientist salary in Switzerland is CHF 1,34,880 per year.

  • A data scientist in UAE earns an average salary of AED 177,062 a year.

  • The national average Data Scientist salary in Saudi Arabia is SAR 175,058 per year. (Payscale)

  • A data scientist in South Africa earns an average salary of ZAR 418,288 a year. (Payscale)

Data is meaningless until its conversion into valuable information. Data Science involves mining large datasets containing structured and unstructured data and identifying hidden patterns to extract actionable insights. 

  • Data without science is nothing

  • Better customer experience

  • Increasing job opportunities

  • Escalating pay for Data science professionals

  • You will have numerous job titles from which to choose

  • You will be at the centre of decision-making in the company

Anyone, whether a newcomer or a professional, willing to learn Data Science can opt for it. Engineers, Marketing Professionals, Software, and IT professionals can take up part-time or external programs in Data Science. For regular courses in Data Science, basic high school level subjects are the minimum requirement.

The Data Science Course Fee would vary according to the level of training you are looking for. However, when we discuss fee structure, irrespective of any training provider that you choose for your classroom training for Data Science, it is ranging from USD 399.70 to USD 1332.33

  • Data Scientist

  • Machine-Learning Engineer

  • Machine-Learning Scientist

  • Application Architect

  • Data Architect

  • Data Engineer

  • Statistician

  • Data Analyst

  • Business Intelligence Analyst

  • Marketing Analyst

Having an understanding of Python, R, Excel, C++, Java and SQL is always preferred. But you can always learn from the basics and improve yourself.

Like any other field, with proper guidance Data Science can become an easy field to learn about, and one can build a career in the field. However, as it is vast, it is easy for a beginner to get lost and lose sight, making the learning experience difficult and frustrating

Some major Data Science tools include; SAS, Apache Hadoop, Tableau, BigML, BigML, Knime, RapidMiner, Excel, Apache Flink, and Power BI.

View more

Syllabus

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python objects
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
• Operator’s precedence and associativity

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES

• Basic data structure in python
• String object basics and inbuilt methods
• List: Object, methods, comprehensions
• Tuple: Object, methods, comprehensions
• Sets: Object, methods, comprehensions
• Dictionary: Object, methods, comprehensions

MODULE 4: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Iterators
• Generator functions
• Lambda functions
• Map, reduce, filter functions

MODULE 5: PYTHON NUMPY PACKAGE

• NumPy Introduction
• Array – Data Structure
• Core Numpy functions
• Matrix Operations

MODULE 6: PYTHON PANDAS PACKAGE

• Pandas functions
• Data Frame and Series – Data Structure
• Data munging with Pandas
• Imputation and outlier analysis

MODULE 1: DATA SCIENCE ESSENTIALS

• Introduction to Data Science
• Data Science Terminologies
• Classifications of Analytics
• Data Science Project workflow

MODULE 2: DATA ENGINEERING FOUNDATION

• Introduction to Data Engineering
• Data engineering importance
• Ecosystems of data engineering tools
• Core concepts of data engineering

MODULE 3: PYTHON FOR DATA SCIENCE

• Introduction to Python
• Python Data Types, Operators
• Flow Control statements, Functions
• Structured vs Unstructured Data
• Python Numpy package introduction
• Array Data Structures in Numpy
• Array operations and methods
• Python Pandas package introduction
• Data Structures : Series and DataFrame
• Pandas DataFrame key methods

MODULE 4: VISUALIZATION WITH PYTHON

• Visualization Packages (Matplotlib)
• Components Of A Plot, Sub-Plots
• Basic Plots: Line, Bar, Pie, Scatter
• Advanced Python Data Visualizations

MODULE 5: R LANGUAGE ESSENTIALS

• R Installation and Setup
• R STUDIO – R Development Env
• R language basics and data structures
• R data structures , control statements

MODULE 6: STATISTICS

• Descriptive And Inferential statistics
• Types Of Data, Sampling types
• Measures of Central Tendencies
• Data Variability: Standard Deviation
• Z-Score, Outliers, Normal Distribution
• Central Limit Theorem
• Histogram, Normality Tests
• Skewness & Kurtosis
• Understanding Hypothesis Testing
• P-Value Method, Types Of Errors
• T Distribution, One Sample T-Test
• Independent And Relational T Tests
• Direct And Indirect Correlation
• Regression Theory

MODULE 7: MACHINE LEARNING INTRODUCTION

• Machine Learning Introduction
• ML core concepts
• Unsupervised and Supervised Learning
• Clustering with K-Means
• Regression and Classification Models.
• Regression Algorithm: Linear Regression
• ML Model Evaluation
• Classification Algorithm: Logistic Regression

MODULE 1: MACHINE LEARNING INTRODUCTION

• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification, And Regression
• Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSION

• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Modeling and Evaluation in Python

MODULE 3: ML ALGO: LOGISTIC REGRESSION

• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Modeling and Evaluation in Python

MODULE 4: ML ALGO: KNN

• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Modeling and Evaluation in Python

MODULE 5: ML ALGO: K MEANS CLUSTERING

• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Modeling in Python

MODULE 6: PRINCIPLE COMPONENT ANALYSIS (PCA)

• Building Blocks Of PCA
• How it works: Finding Principal Components
• Modeling PCA in Python

MODULE 7: ML ALGO: DECISION TREE

• Random Forest Ensemble technique
• How it works: Bagging Theory
• Modeling and Evaluation in Python

MODULE 8: ML ALGO: NAÏVE BAYES

• Introduction to Naive Bayes
• How it works: Bayes' Theorem
• Naive Bayes For Text Classification
• Modeling and Evaluation in Python

MODULE 9: GRADIENT BOOSTING, XGBOOST

• Introduction to Boosting and XGBoost
• How it works: weak learners' concept
• Modeling and Evaluation of in Python

MODULE 10: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python

MODULE 11: ARTIFICIAL NEURAL NETWORK (ANN)

• Introduction to ANN
• How It Works: Back prop, Gradient Descent
• Modeling and Evaluation of ANN in Python

MODULE 12: ADVANCED ML CONCEPTS

• Adv Metrics (Roc_Auc, R2, Precision, Recall)
• K-Fold Cross-validation
• Grid And Randomized Search CV In Sklearn
• Imbalanced Data Set: Smote Technique
• Feature Selection Techniques

MODULE 1: TIME SERIES FORECASTING - ARIMA

• What is Time Series?
• Trend, Seasonality, cyclical and random
• Autoregressive Model (AR)
• Moving Average Model (MA)
• Stationarity of Time Series
• ARIMA Model
• Autocorrelation and AIC 

MODULE 2: FEATURE ENGINEERING

• Introduction to Features Engineering
• Transforming Predictors
• Feature Selection methods
• Backward elimination technique
• Feature importance from ML modeling

MODULE 3: SENTIMENT ANALYSIS

• Introduction to Sentiment Analysis
• Python packages: TextBlob, NLTK
• Case study: Twitter Live Sentiment Analysis

MODULE 4: REGULAR EXPRESSIONS WITH PYTHON

• Regex Introduction
• Regex codes
• Text extraction with Python Regex

MODULE 5: ML MODEL DEPLOYMENT WITH FLASK

• Introduction to Flask
• URL and App routing
• Flask application – ML Model Deployment

MODULE 6: ADVANCED DATA ANALYSIS WITH MS EXCEL

• MS Excel core Functions
• Pivot Table
• Advanced Functions (VLOOKUP, INDIRECT..)
• Linear Regression with EXCEL
• Goal Seek Analysis
• Data Table
• Solving Data Equation with EXCEL
• Monte Carlo Simulation with MS EXCEL

MODULE 7: AWS CLOUD FOR DATA SCIENCE

• Introduction of cloud
• Difference between GCC, Azure, AWS
• AWS Service ( EC2 and S3 service)
• AWS Service (AMI), AWS Service (RDS)
• AWS Service (IAM), AWS (Athena service)
• AWS (EMR), AWS, AWS (Redshift)
• ML Modeling with AWS Sage Maker

MODULE 8: AZURE FOR DATA SCIENCE

• Introduction to AZURE ML studio
• Data Pipeline and ML modeling with Azure

MODULE 1: GIT INTRODUCTION

• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture

MODULE 2: GIT REPOSITORY and GitHub

• Git Repo Introduction
• Create New Repo with Init command
• Copying existing repo
• Git user and remote node
• Git Status and rebase
• Review Repo History
• GitHub Cloud Remote Repo

MODULE 3: COMMITS, PULL, FETCH AND PUSH

• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING, AND MERGING

• Organize code with branches
• Checkout branch
• Merge branches

MODULE 5: UNDOING CHANGES

• Editing Commits
• Commit command Amend flag
• Git reset and revert

MODULE 6: GIT WITH GITHUB AND BITBUCKET

• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
• Bitbucket Git account

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
• Hands-on Map Reduce task

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
• Working with Spark SQL Query Language

MODULE 5: MACHINE LEARNING WITH SPARK ML

• Introduction to MLlib Various ML algorithms supported by MLib
• ML model with Spark ML.
• Linear regression
• logistic regression
• Random forest

MODULE 6: KAFKA and Spark

• Kafka architecture
• Kafka workflow
• Configuring Kafka cluster
• Operations

MODULE 1: BUSINESS INTELLIGENCE INTRODUCTION

• What Is Business Intelligence (BI)?
• What Bi Is The Core Of Business Decisions?
• BI Evolution
• Business Intelligence Vs Business Analytics
• Data Driven Decisions With Bi Tools
• The Crisp-Dm Methodology

MODULE 2: BI WITH TABLEAU: INTRODUCTION

• The Tableau Interface
• Tableau Workbook, Sheets And Dashboards
• Filter Shelf, Rows And Columns
• Dimensions And Measures
• Distributing And Publishing

MODULE 3: TABLEAU: CONNECTING TO DATA SOURCE

• Connecting To Data File , Database Servers
• Managing Fields
• Managing Extracts
• Saving And Publishing Data Sources
• Data Prep With Text And Excel Files
• Join Types With Union
• Cross-Database Joins
• Data Blending
• Connecting To Pdfs

MODULE 4: TABLEAU: BUSINESS INSIGHTS

• Getting Started With Visual Analytics
• Drill Down And Hierarchies
• Sorting & Grouping
• Creating And Working Sets
• Using The Filter Shelf
• Interactive Filters
• Parameters
• The Formatting Pane
• Trend Lines & Reference Lines
• Forecasting
• Clustering

MODULE 5: DASHBOARDS, STORIES AND PAGES

• Dashboards And Stories Introduction
• Building A Dashboard
• Dashboard Objects
• Dashboard Formatting
• Dashboard Interactivity Using Actions
• Story Points
• Animation With Pages

MODULE 6: BI WITH POWER-BI

• Power BI basics
• Basics Visualizations
• Business Insights with Power BI

MODULE 1: DATABASE INTRODUCTION

• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)

MODULE 2: SQL BASICS

• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
• Comments
• import and export dataset

MODULE 3: DATA TYPES AND CONSTRAINTS

• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table

MODULE 5: SQL JOINS

• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join

MODULE 6: SQL COMMANDS AND CLAUSES

• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries

MODULE 7: DOCUMENT DB/NO-SQL DB

• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management

MODULE 1: ARTIFICIAL INTELLIGENCE OVERVIEW

• Evolution Of Human Intelligence
• What Is Artificial Intelligence?
• History Of Artificial Intelligence.
• Why Artificial Intelligence Now?
• Ai Terminologies
• Areas Of Artificial Intelligence
• Ai Vs Data Science Vs Machine Learning

MODULE 2: DEEP LEARNING INTRODUCTION

• Deep Neural Network
• Machine Learning vs Deep Learning
• Feature Learning in Deep Networks
• Applications of Deep Learning Networks

MODULE 3: TENSORFLOW FOUNDATION

• TensorFlow Installation and setup
• TensorFlow Structure and Modules
• Hands-On: ML modeling with TensorFlow

MODULE 4: COMPUTER VISION INTRODUCTION

• Image Basics
• Convolution Neural Network (CNN)
• Image Classification with CNN
• Hands-On: Cat vs Dogs Classification with CNN Network

MODULE 5: NATURAL LANGUAGE PROCESSING (NLP)

• NLP Introduction
• Bag of Words Models
• Word Embedding
• Language Modeling
• Hands-On: BERT Algorithm

MODULE 6: AI ETHICAL ISSUES AND CONCERNS

• Issues And Concerns Around Ai
• Ai And Ethical Concerns
• Ai And Bias
• Ai: Ethics, Bias, And Trust

FAQ'S

According to IDC, by 2025, global data will grow to 175 zettabytes. Data Science enables companies to efficiently understand gigantic data from multiple sources and derive valuable insights to make smarter data-driven decisions. Data Science is widely used in various industry domains, including marketing, healthcare, finance, banking, policy work, and more. That explains why Data Science is important.

Yes, companies do hire freshers for Data Scientist positions. In fact, most of the entry-level analytics jobs in India don’t need any specialization or post-graduation. The only qualification you need in these companies is an Engineering Degree and even the stream doesn’t matter. These companies only look for your Aptitude, communication skills and critical reasoning.

Datamites does provide classroom training, but only in Bangalore. We would be pleased to host one in other locations, ON-DEMAND of the applicants as according to the availability of other candidates from the exact location.

We are adamant in providing you with instructors who are certified and highly qualified with decades of experience in the industry and well versed in the subject matter.

We provide you with flexible learning options from Live Online, self-study methods to Classroom training. You can choose the one preferable to you.

Our Flexi-Pass for CDS training will allow you to attend sessions from DataMites for a period of 3 months concerning any queries or revisions you would like to clear.

We will issue you with IABAC® certification that would provide global recognition of the relevant skills.

Definitely, after the completion of your course, we will issue you with a course completion certificate.

  Yes. Photo ID Proof such as a National ID card, Driving License etc are required for issuing a Participation Certificate and booking certification exam as required.

You needn’t worry about that. Just contact your trainers regarding the same and fix a class according to your schedule. In the case of online training, every session will be recorded and uploaded so that you can easily learn whatever you missed at your own pace and comfort.

Yes, you shall be provided with a free demo class so as to give a brief idea of how the training will be done and what the training will cover.

We provide flexible learning options from Live Online, self-study methods to classroom training. You can choose the one preferable to you.

DataMites provides a three-phase learning method. In Phase 1, candidates would be provided with self-study videos and books to help them gain ample information about the course. 

Phase 2 is the primary stage of Intensive live online training and after the training, you will receive IABAC Certified Data Scientist Certification which is a global certification. And in the third phase, we will issue projects and placements.

Learning through a case study approach

Theory → Hands-On → Case Study → Project→ Model Deployment

Yes for sure, it’s important that you make the most out of your training sessions. You surely can ask for support sessions if you need any further clarifications.

We accept payment via;

  • Cash

  • Net Banking

  • Credit Card

  • PayPal

  • Visa

  • Master Card

  • American Express

  • Cheque

  • Debit Card

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

Data Science Interview Questions

Data Science Projects

Trending Courses in INDIA

CUSTOMER REVIEWS

HELPFUL RESOURCES - DataMites Official Blog




RECOMMENDED COURSES

Global DATA SCIENCE COURSES Countries