ARTIFICIAL INTELLIGENCE CERTIFICATION AUTHORITIES

Artificial Intelligence Course Features

ARTIFICIAL INTELLIGENCE LEAD MENTORS

ARTIFICIAL INTELLIGENCE COURSE FEE IN UZBEKISTAN

Live Virtual

Instructor Led Live Online

UZS 21,000,000
UZS 16,864,324

  • IABAC® & DMC Certification
  • 9-Month | 780 Learning Hours
  • 100-Hour Live Online Training
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

UZS 12,545,450
UZS 10,076,817

  • Self Learning + Live Mentoring
  • IABAC® & DMC Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING AI ONLINE CLASSES IN UZBEKISTAN

BEST ARTIFICIAL INTELLIGENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR AI COURSE

Why DataMites Infographic

SYLLABUS OF ARTIFICIAL INTELLIGENCE COURSE IN UZBEKISTAN

MODULE 1 : ARTIFICIAL INTELLIGENCE OVERVIEW 

• Evolution Of Human Intelligence
• What Is Artificial Intelligence?
• History Of Artificial Intelligence
• Why Artificial Intelligence Now?
• Areas Of Artificial Intelligence
• AI Vs Data Science Vs Machine Learning

MODULE 2 :  DEEP LEARNING INTRODUCTION

• Deep Neural Network
• Machine Learning vs Deep Learning
• Feature Learning in Deep Networks
• Applications of Deep Learning Networks

MODULE3 : TENSORFLOW FOUNDATION

• TensorFlow Structure and Modules
• Hands-On:ML modeling with TensorFlow

MODULE 4 : COMPUTER VISION INTRODUCTION

• Image Basics
• Convolution Neural Network (CNN)
• Image Classification with CNN
• Hands-On: Cat vs Dogs Classification with CNN Network

MODULE 5 : NATURAL LANGUAGE PROCESSING (NLP)

• NLP Introduction
• Bag of Words Models
• Word Embedding
• Hands-On:BERT Algorithm

MODULE 6 : AI ETHICAL ISSUES AND CONCERNS

• Issues And Concerns Around Ai
• Ai And Ethical Concerns
• Ai And Bias
• Ai:Ethics, Bias, And Trust

MODULE 1 : PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2 : PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3 : PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4 : PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2 : HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empherical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4 : HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2: PYTHON NUMPY  PACKAGE 

• Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3: PYTHON PANDAS PACKAGE

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4:  VISUALIZATION WITH PYTHON - Matplotlib 

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION 

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1:  FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4: ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7:  GRADIENT BOOSTING, XGBOOST 

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python

MODULE 2:  SENTIMENT ANALYSIS

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3:  REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4: ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL 

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure,AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8: INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

 MODULE 2: SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS

• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join
• Windows functions: Over, Partition , Rank 

MODULE 6: SQL COMMANDS AND CLAUSES

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

 MODULE 7: DOCUMENT DB/NO-SQL DB

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

• Organize code with branches
• Checkout branch
• Merge branches
• Editing Commits
• Commit command Amend flag
• Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET 

• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

  • Big Data Overview
  • Five Vs of Big Data
  • What is Big Data and Hadoop
  • Introduction to Hadoop
  • Components of Hadoop Ecosystem
  • Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE 

  • HDFS – Big Data Storage
  • Distributed Processing with Map Reduce
  • Mapping and reducing  stages concepts
  • Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

  • PySpark Introduction
  • Spark Configuration
  • Resilient distributed datasets (RDD)
  • Working with RDDs in PySpark
  • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

  • Introducing Spark SQL
  • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2: POWER-BI BASICS 

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4 :  CONNECTING TO VARIOUS DATA SOURCES 

 • Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

MODULE 1: NEURAL NETWORKS 

 • Structure of neural networks
 • Neural network - core concepts(Weight initialization)
 • Neural network - core concepts(Optimizer)
 • Neural network - core concepts(Need of activation)
 • Neural network - core concepts(MSE & RMSE)
 • Feed forward algorithm
 • Backpropagation

MODULE 2: IMPLEMENTING DEEP NEURAL NETWORKS 

 • Introduction to neural networks with tf2.X
 • Simple deep learning model in Keras (tf2.X)
 • Building neural network model in TF2.0 for MNIST dataset

MODULE 3: DEEP COMPUTER VISION - IMAGE RECOGNITION

• Convolutional neural networks (CNNs)
• CNNs with Keras-part1
• CNNs with Keras-part2
• Transfer learning in CNN
• Flowers dataset with tf2.X(part-1)
• Flowers dataset with tf2.X(part-2)
• Examining x-ray with CNN model

MODULE 4 : DEEP COMPUTER VISION - OBJECT DETECTION

 • What is Object detection
 • Methods of Object Detections
 • Metrics of Object detection
 • Bounding Box regression
 • labelimg
 • RCNN
 • Fast RCNN
 • Faster RCNN
 • SSD
 • YOLO Implementation
 • Object detection using cv2

MODULE 5: RECURRENT NEURAL NETWORK 

• RNN introduction
• Sequences with RNNs
• Long short-term memory networks(part 1)
• Long short-term memory networks(part 2)
• Bi-directional RNN and LSTM
• Examples of RNN applications

MODULE 6: NATURAL LANGUAGE PROCESSING (NLP)

• Introduction to Natural language processing
• Working with Text file
• Working with pdf file
• Introduction to regex
• Regex part 1
• Regex part 2
• Word Embedding
• RNN model creation
• Transformers and BERT
• Introduction to GPT (Generative Pre-trained Transformer)
• State of art NLP and projects

MODULE 7: PROMPT ENGINEERING

• Introduction to Prompt Engineering
• Understanding the Role of Prompts in AI Systems
• Design Principles for Effective Prompts
• Techniques for Generating and Optimizing Prompts
• Applications of Prompt Engineering in Natural Language Processing

MODULE 8: REINFORCEMENT LEARNING

• Markov decision process
• Fundamental equations in RL
• Model-based method
• Dynamic programming model free methods

MODULE 9: DEEP REINFORCEMENT LEARNING

• Architectures of deep Q learning
• Deep Q learning
• Reinforcement Learning Projects with OpenAI Gym

MODULE 10: Gen AI

• Gan introduction, Core Concepts, and Applications
• Core concepts of GAN
• GAN applications
• Building GAN model with TensorFlow 2.X
• Introduction to GPT (Generative Pre-trained Transformer)
• Building a Question answer bot with the models on Hugging Face

MODULE 11: Gen AI

• Introduction to Autoencoder
• Basic Structure and Components of Autoencoders
• Types of Autoencoders: Vanilla, Denoising, Variational, Sparse, and Convolutional Autoencoders
• Training Autoencoders: Loss Functions, Optimization Techniques
• Applications of Autoencoders: Dimensionality Reduction, Anomaly Detection, Image

OFFERED ARTIFICIAL INTELLIGENCE COURSES IN UZBEKISTAN

ARTIFICIAL INTELLIGENCE COURSE REVIEWS

ABOUT ARTIFICIAL INTELLIGENCE TRAINING IN UZBEKISTAN

The Artificial Intelligence course in Uzbekistan offers comprehensive training in cutting-edge AI technologies, preparing students for diverse career opportunities in industries such as healthcare, finance, and technology. According to a report by Grand View Research, the anticipated growth of the global artificial intelligence market is forecasted to achieve a remarkable compound annual growth rate (CAGR) of 37.3% between 2023 and 2030. The market is expected to reach a substantial value of $1,811.8 billion by the year 2030. In Uzbekistan, the rising tide of technology is becoming increasingly significant, presenting substantial potential for growth and innovation within the country's AI industry. With AI reshaping industries worldwide, individuals aspiring to enter the field in Uzbekistan are presented with a compelling chance to acquire knowledge and leverage the transformative capabilities of Artificial Intelligence.

DataMites, a globally recognized training institute, provides a diverse array of specialized Artificial Intelligence courses in Uzbekistan. Prospective professionals can select from programs like Artificial Intelligence Engineer, Artificial Intelligence Expert, Certified NLP Expert, Artificial Intelligence Foundation, and Artificial Intelligence for Managers, tailored to different skill levels and career goals.

Emphasizing career development, the Artificial Intelligence training in Uzbekistan equips individuals for pivotal roles in designing, implementing, and enhancing AI systems across industries. Graduates acquire the skills to adeptly utilize AI technologies, fostering innovation and addressing real-world challenges, culminating in the prestigious IABAC Certification that validates expertise in this transformative field.

DataMites utilizes a distinctive three-phase approach in delivering its Artificial Intelligence Course in Uzbekistan.

Phase 1 - Initial Self-Study:
Commencing with self-paced learning through high-quality videos, our program empowers participants to establish a robust foundation in Artificial Intelligence fundamentals.

Phase 2 - Interactive Learning Journey and 5-Month Live Training Period:
Participants can opt for our online artificial intelligence training in Uzbekistan, featuring 120 hours of live online instruction spread over 9 months. This immersive stage encompasses a comprehensive curriculum, intensive 5-month live training sessions, hands-on projects, and guidance from experienced trainers.

Phase 3 - Internship and Career Support:
This phase offers practical exposure through 20 Capstone Projects and a client project, concluding with a valuable certification in artificial intelligence. DataMites also provides artificial intelligence courses with internship opportunities in Uzbekistan, enhancing participants' preparedness for their careers.

DataMites delivers a comprehensive and well-organized Artificial Intelligence course in Uzbekistan, incorporating key elements:

Experienced Instructors:
Led by Ashok Veda, the founder of the AI startup Rubixe, the course benefits from his extensive experience in mentoring over 20,000 individuals in data science and AI.

Thorough Curriculum:
Encompassing essential topics, the curriculum ensures participants acquire a profound understanding of Artificial Intelligence.

Recognized Certifications:
Participants have the chance to earn industry-recognized certifications from IABAC, bolstering their credibility in the field.

Course Duration:
A 9-month program requiring a commitment of 20 hours per week, totaling over 780 learning hours.

Flexible Learning:
Students can opt for self-paced learning or engage in online artificial intelligence training in Uzbekistan, accommodating individual schedules.

Real-World Projects:
Hands-on projects using real-world data provide practical experience in applying AI concepts.

Internship Opportunities:
DataMites facilitates Artificial Intelligence training with internship opportunities in Uzbekistan, enabling participants to apply AI skills in real-world scenarios and gain valuable industry experience.

Affordable Pricing and Scholarships:
The artificial intelligence course fee in Uzbekistan offers affordability, ranging from UZS 8,582,083 to UZS 22,826,266 Additionally, scholarship options are available to enhance education accessibility.

Uzbekistan, located in Central Asia, is renowned for its rich cultural heritage, historic Silk Road cities like Samarkand, and diverse landscapes encompassing deserts, mountains, and lush valleys.

The Uzbekistani economy is characterized by a mix of agriculture, natural resource extraction, and a growing industrial sector, with key exports including cotton, natural gas, and minerals, contributing to its economic development.

The future of artificial intelligence in Uzbekistan is actively embraced, with growing interest and investment in AI technologies, fostering innovation, and paving the way for advancements in sectors such as healthcare, education, and industry, contributing to the nation's technological progress.

Embark on a journey of career excellence with DataMites, where we not only present an exceptional Artificial Intelligence Course in Uzbekistan but also offer a diverse range of avant-garde programs. Delve into Python, Data Science, Machine Learning, Data Engineering, Tableau, Blockchain, Data Analytics, MLOps, and beyond. Our all-encompassing curriculum, guided by industry experts, equips you for versatile roles in the ever-evolving tech landscape. Opt for DataMites as your educational ally in Uzbekistan, opening doors to career success and fostering innovation.

ABOUT DATAMITES ARTIFICIAL INTELLIGENCE COURSE IN UZBEKISTAN

The core of Artificial Intelligence (AI) lies in its ability to replicate human cognitive processes using computer systems, enabling machines to perform tasks that traditionally require human intelligence.

Machine Learning operates on the principle of teaching machines to recognize patterns within data autonomously, allowing them to make decisions or predictions without explicit programming instructions.

Within business frameworks, AI plays diverse roles including automation, chatbot-driven customer service, predictive analytics, and tailored marketing strategies. These applications enhance operational efficiency and decision-making processes.

While Artificial Intelligence encompasses a broad spectrum of technologies aimed at mimicking human intelligence, Machine Learning is a subset of AI focused specifically on algorithms learning from data patterns to make predictions or decisions.

Python, R, Java, and C++ are key languages in AI development, with Python being particularly favored for its simplicity and extensive libraries tailored for AI applications.

Although AI can automate certain tasks, its primary role is to augment human capabilities rather than entirely replace them. This often leads to shifts in employment roles and the emergence of new skill requirements.

Ethical dilemmas in AI development include algorithmic bias, privacy concerns, and potential societal impacts such as job displacement and exacerbation of socioeconomic inequalities.

Risks associated with AI implementation include misuse, cybersecurity vulnerabilities, and unintended consequences stemming from biased or poorly designed algorithms.

AI engineers are tasked with developing AI models, ensuring data accuracy, refining algorithms, and collaborating with multidisciplinary teams to deploy AI solutions effectively.

Top-paying roles in AI include machine learning engineering, data science, AI research, and AI architecture, with salary levels influenced by experience and geographical location.

Major tech companies like Google, Microsoft, and Amazon, along with startups, research institutions, and firms across various sectors, actively seek AI professionals to drive innovation and growth.

In Uzbekistan, individuals can gain AI expertise through online courses, university programs, or specialized training offered by tech organizations and educational institutions.

AI positions in Uzbekistan often require degrees in computer science, mathematics, or related fields, along with programming skills and previous engagement in AI projects.

In Uzbekistan, AI roles demand proficiency in Python, familiarity with machine learning algorithms, strong data analysis skills, and adept problem-solving abilities.

While certifications can enhance credibility, practical experience and a solid project portfolio are often more significant in securing AI roles in Uzbekistan.

Transitioning into an AI engineering career in Uzbekistan requires acquiring relevant skills through education, hands-on projects, and active participation in the AI community.

The job market for AI professionals in Uzbekistan is growing, with increasing demand across sectors such as finance, healthcare, and technology startups.

Transitioning into AI from a different field is possible with dedication to acquiring the necessary skills and building a strong portfolio showcasing AI proficiency.

Entry-level AI roles suitable for beginners include positions like AI research assistants, data analysts, or junior machine learning engineers, emphasizing skill development and career progression.

In healthcare, AI is utilized for tasks such as medical image analysis, drug discovery, personalized treatment planning, and administrative optimization, aiming to enhance diagnostic accuracy and patient care outcomes.

View more

FAQ’S OF ARTIFICIAL INTELLIGENCE TRAINING IN UZBEKISTAN

DataMites provides a range of AI certifications in Uzbekistan, covering areas like Artificial Intelligence Engineering, AI Expertise, Certified NLP Expertise, AI Management, and AI Foundations, offering thorough training and certification across different aspects of AI technologies and their applications.

The eligibility criteria for DataMites' Artificial Intelligence Courses in Uzbekistan vary. Although individuals with backgrounds in computer science, engineering, mathematics, or statistics are commonly eligible, those from non-technical fields have also made successful transitions. DataMites encourages anyone interested in AI, offering opportunities for individuals from diverse backgrounds to participate and excel in artificial intelligence training in Uzbekistan.

The duration of the Artificial Intelligence Course in Uzbekistan depends on the chosen program, with options ranging from one month to nine months. Flexible training schedules are offered on weekdays and weekends to accommodate various participant availabilities.

You might want to consider enrolling with DataMites, a well-known international training institute that specializes in data science and artificial intelligence, offering extensive learning opportunities for individuals aspiring to delve into AI.

Engaging in DataMites' Artificial Intelligence Course equips individuals with a strong understanding of AI basics, machine learning, and practical implementations. Led by industry professionals, the comprehensive curriculum emphasizes hands-on learning, empowering participants to utilize AI principles in real-world scenarios and develop skills relevant across diverse industries.

DataMites in Uzbekistan offers multiple payment options for artificial intelligence course training, such as cash, debit/credit cards (Visa, Mastercard, American Express), checks, EMI, PayPal, and net banking.

Indeed, as part of the artificial intelligence course, DataMites in Uzbekistan offers 10 Capstone projects and 1 Client Project, fostering hands-on experience to facilitate practical learning.

Certainly, in Uzbekistan, you have the opportunity to attend help sessions aimed at enhancing your understanding of artificial intelligence topics. These sessions offer additional support and clarification to aid in better comprehension.

At DataMites in Uzbekistan, the approach to artificial intelligence training revolves around case studies. The curriculum, meticulously crafted by an expert content team, is tailored to meet industry demands, ensuring a career-oriented educational experience.

Enroll in online artificial intelligence training in Uzbekistan to access expert-led instruction, flexible learning opportunities, and practical experience. Gain industry-recognized IABAC certification while mastering machine learning and deep learning concepts. Receive career guidance and become part of a supportive learning community.

The fee for Artificial Intelligence Training in Uzbekistan offered by DataMites ranges from UZS 8,582,083 to UZS 22,826,266. The actual cost may vary based on factors such as the selected course, program duration, and any additional features or services included.

At DataMites Uzbekistan, the artificial intelligence training sessions are led by Ashok Veda, a widely respected Data Science coach and AI Expert. He is supported by elite mentors with real-world experience hailing from leading companies and prestigious institutions such as IIMs, ensuring exceptional guidance throughout the program.

The Flexi-Pass option for AI training in Uzbekistan offers flexible learning choices, enabling students to tailor their schedules. It provides access to a wide range of learning resources and mentorship, accommodating different learning speeds and personal commitments to enhance the educational journey.

Upon finishing AI training at DataMites Uzbekistan, you earn IABAC Certification, which is recognized within the EU framework. The curriculum adheres to industry standards and is globally accredited by IABAC, guaranteeing that you obtain credentials acknowledged in the field of Artificial Intelligence.

To attend AI training sessions in Uzbekistan, participants must bring a valid photo ID, such as a national ID card or driver's license. This is necessary to obtain the participation certificate and schedule certification exams.

In case of an inability to attend an AI session in Uzbekistan, you can utilize recorded sessions or seek mentor guidance to catch up. Flexibility ensures continuous progress despite occasional absences.

Absolutely, in Uzbekistan, you have the opportunity to attend a demo class for artificial intelligence courses before making any payment. This allows you to firsthand assess the suitability of the program.

Indeed, DataMites offers Artificial Intelligence Courses in Uzbekistan coupled with internships in selected industries. These internships provide practical experience in Analytics, Data Science, and AI positions, thereby bolstering career advancement opportunities.

The DataMites Placement Assistance Team (PAT) organizes career mentoring sessions for aspiring individuals, aiming to help them understand their role in the corporate world. Industry experts guide students in Uzbekistan on various career possibilities in Data Science, providing clarity on available options. Additionally, participants gain insights into potential challenges as newcomers in the field and learn strategies to overcome them.

The AI Foundation Course is designed for beginners, offering a thorough grasp of AI, its applications, and real-world illustrations. It accommodates individuals with or without technical backgrounds, encompassing topics such as machine learning, deep learning, and neural networks.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

OTHER ARTIFICIAL INTELLIGENCE TRAINING CITIES IN UZBEKISTAN

Global ARTIFICIAL INTELLIGENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog