DATA ANALYST CERTIFICATION AUTHORITIES

COURSE FEATURES

DATA ANALYST LEAD MENTORS

DATA ANALYST COURSE FEE IN ADDIS ABABA, ETHIOPIA

Live Virtual

Instructor Led Live Online

ETB 90,410
ETB 63,877

  • IABAC® Certification
  • 6-Month | 200+ Learning Hours
  • 20 HOURS LEARNING A WEEK
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

ETB 45,210
ETB 36,602

  • Self Learning + Live Mentoring
  • IABAC® Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA ANALYST ONLINE CLASSES IN ADDIS ABABA

BEST CERTIFIED DATA ANALYST CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA ANALYST COURSE

Why DataMites Infographic

SYLLABUS OF DATA ANALYST COURSE IN ADDIS ABABA

MODULE 1: DATA ANALYSIS FOUNDATION

• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain

MODULE 2: CLASSIFICATION OF ANALYTICS

• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics

MODULE 3: CRIP-DM Model

• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
Modeling, Evaluation, Deploying,Monitoring

MODULE 4: UNIVARIATE DATA ANALYSIS

• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.

MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS

• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot

MODULE 6: BI-VARIATE DATA ANALYSIS

• Scatter Plots
• Regression Analysis
• Correlation Coefficients

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES

• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

  • Introduction to Statistics
  • Descriptive And Inferential Statistics
  • Basic Terms Of Statistics
  • Types Of Data

MODULE 2 : HARNESSING DATA 

  • Random Sampling
  • Sampling With Replacement And Without Replacement
  • Cochran's Minimum Sample Size
  • Types of Sampling
  • Simple Random Sampling
  • Stratified Random Sampling
  • Cluster Random Sampling
  • Systematic Random Sampling
  • Multi stage Sampling
  • Sampling Error
  • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

  • Exploratory Data Analysis Introduction
  • Measures Of Central Tendencies: Mean, Median And Mode
  • Measures Of Central Tendencies: Range, Variance And Standard Deviation
  • Data Distribution Plot: Histogram
  • Normal Distribution & Properties
  • Z Value / Standard Value
  • Empherical Rule  and Outliers
  • Central Limit Theorem
  • Normality Testing
  • Skewness & Kurtosis
  • Measures Of Distance: Euclidean, Manhattan And MinkowskiDistance
  • Covariance & Correlation

MODULE 4 : HYPOTHESIS TESTING 

  • Hypothesis Testing Introduction
  • P- Value, Critical Region
  • Types of Hypothesis Testing
  • Hypothesis Testing Errors : Type I And Type Ii
  • Two Sample Independent T-test
  • Two Sample Relation T-test
  • One Way Anova Test
  • Application of Hypothesis testing

MODULE 1: COMPARISION AND CORRELATION ANALYSIS

• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis

MODULE 2: VARIANCE AND FREQUENCY ANALYSIS

• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis

MODULE 3: RANKING ANALYSIS

• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis

MODULE 4: BREAK EVEN ANALYSIS

• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing

MODULE 5: PARETO (80/20 RULE) ANALSYSIS

• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis

MODULE 6: Time Series and Trend Analysis

• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis

MODULE 7: DATA ANALYSIS BUSINESS REPORTING

• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements

MODULE 1: DATA ANALYTICS FOUNDATION

• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity

MODULE 2: OPTIMIZATION MODELS

• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity

MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION

• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel

MODULE 4: DECISION MODELING

• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer

MODULE 1: MACHINE LEARNING INTRODUCTION

• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSSION

• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool

MODULE 3: ML ALGO: LOGISTIC REGRESSION

• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool

MODULE 4: ML ALGO: KNN

• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool

MODULE 5: ML ALGO: K MEANS CLUSTERING

• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering

MODULE 6: ML ALGO: DECISION TREE

• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool

MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool

MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)

• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool

MODULE 1: DATABASE INTRODUCTION

• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)

MODULE 2: SQL BASICS

• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS

• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table

MODULE 5: SQL JOINS

• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES

• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries

MODULE 7: DOCUMENT DB/NO-SQL DB

• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS

• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies

MODULE 2: POWER-BI BASICS

• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION

MODULE 3: DATA TRANSFORMATION TECHNIQUES

• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES

• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model

DATA ANALYST COURSE REVIEWS

ABOUT DATA ANALYST TRAINING IN ADDIS ABABA

In Addis Ababa, Ethiopia's capital, witness the unfolding potential of Data Analytics as the market size surges from USD 31.8 billion in 2021 to a projected USD 329.8 billion by 2030, with a significant Compound Annual Growth Rate (CAGR) of 29.9%. Positioned at the heart of this digital transformation, Addis Ababa presents a thriving landscape for professionals entering the Data Analytics Industry. Seize the moment to initiate your journey into data analytics, unlocking a pathway to innovation and success in Ethiopia's capital.

DataMites emerges as a distinguished institute, offering a Certified Data Analyst Course in Addis Ababa crafted for beginners and intermediate learners. This career-focused program is designed to impart a solid foundation in Data Analysis, Data Science Foundation, Statistics, Visual Analytics, Data Modeling, and Predictive Modeling. In Addis Ababa's evolving professional environment, DataMites provides aspiring individuals with the essential skills and knowledge required in the field of Data Analytics. The inclusion of IABAC Certification further solidifies our commitment to delivering top-tier education and facilitating career growth in Ethiopia's capital.

Understanding the structure of our certified data analyst training in Addis Ababa is vital before exploring our courses. The training is strategically divided into three phases:

Phase 1: Pre-Course Self-Study

Commence your learning journey with high-quality videos employing an easy learning approach, ensuring a solid foundation for subsequent training.

Phase 2: 3-Month Live Training

Immerse yourself in a focused three-month live training period, dedicating 20 hours per week. This phase encompasses a comprehensive syllabus, hands-on projects, and guidance from expert trainers and mentors, fostering practical skills.

Phase 3: 3-Month Project Mentoring

Elevate your expertise through a three-month project mentoring phase, participating in 5+ capstone projects, a real-time internship, and a client/live project. Successful completion culminates in IABAC and Data Analytics Internship Certification, marking your proficiency in Data Analytics.

DataMites: Transformative Data Analytics Training in Ethiopia

Ashok Veda and Expert Faculty

At the helm of DataMites stands Ashok Veda, a seasoned professional with over 19 years of experience in Data Analytics and AI. Serving as the Founder & CEO at Rubixe™, his leadership ensures top-tier education, bringing a wealth of expertise to our students.

Comprehensive Course Curriculum - No-Code Program (Optional Python)

Our 6-month program, led by Ashok Veda, features a no-code program (optional Python), committing 20 hours per week and totaling 200+ learning hours. Achieve global recognition with the IABAC® Certification, validating your expertise.

Practical Learning with Real-World Projects and Internship Opportunities

Immerse yourself in practical learning with 5+ capstone projects, a client/live project, and a real-time internship. Our program bridges theoretical knowledge with hands-on experience, shaping well-rounded professionals.

Career Guidance and Job Support

Beyond education, DataMites offers end-to-end job support, personalized resume crafting, data analytics interview preparation, and continuous assistance with job updates and connections. Join our exclusive learning community for networking and collaboration.

Affordable Pricing and Scholarships

DataMites prioritizes accessibility with affordable pricing, with data analytics course fee in Addis Ababa ranging from ETB 24,339 to ETB 74,843. Explore scholarship opportunities, making quality education affordable and ensuring a pathway to success in Ethiopia's burgeoning Data Analytics landscape.

Addis Ababa, Ethiopia's capital, serves as the focal point for the burgeoning Data Analytics Industry. With a landscape marked by innovation, technological advancement, and strategic insights, Addis Ababa's Data Analytics sector plays a pivotal role in shaping the nation's digital future, fostering a dynamic ecosystem for professionals.

Data Analysts in Ethiopia command highly competitive compensation, averaging 110,000 ETB per year, according to Glassdoor. This robust remuneration reflects the industry's recognition of Data Analysts' essential role in deciphering insights, propelling innovation, and contributing significantly to Addis Ababa's digital evolution. In an environment characterized by high demand and specialized skills, Data Analysts stand as highly valued professionals, securing substantial salaries in the vibrant analytics arena of Addis Ababa.

Embark on a journey of professional growth in Addis Ababa with DataMites, a trailblazer in Data Analytics Training in Addis Ababa. Our array of courses, including Certified Data Analyst, Python,  Machine Learning, Artificial Intelligence, Data Engineering, Tableau, Data Science, and more, equips you with diverse skills tailored to industry needs. Guided by industry veteran Ashok Veda, our programs offer top-tier education, positioning you for success in a competitive job market. DataMites, with its affordable pricing, supportive learning community, and global certifications, stands as the catalyst for your triumphant career in the vibrant landscape of Addis Ababa.

ABOUT DATAMITES DATA ANALYST COURSE IN ADDIS ABABA

Data analytics encompasses the systematic examination and interpretation of datasets to derive insights that inform decision-making processes. This multifaceted approach involves various stages, including data collection, rigorous cleaning to ensure accuracy, detailed analysis employing statistical methods, and comprehensive interpretation to uncover trends and patterns within the data.

The future of data analysis is bright, driven by advancements in AI, machine learning, and big data. Industries increasingly rely on data-driven decision-making, fueling demand for skilled data professionals.

Professionals in the field of data analytics engage in a plethora of activities aimed at extracting actionable insights from raw data. These activities span from meticulous data cleaning and structuring to sophisticated statistical and predictive modeling techniques, all geared towards uncovering meaningful patterns and trends. Additionally, effective communication of these insights to relevant stakeholders is paramount, ensuring informed decision-making across various organizational levels.

Typically, a bachelor's degree in statistics, mathematics, computer science, or a related field is expected for a data analyst course.

Within the expansive domain of data analytics, individuals may hold diverse job titles that reflect their unique roles and responsibilities. From Data Analysts who specialize in uncovering insights from structured datasets to Business Analysts who leverage data to address organizational challenges, each role contributes to the broader objective of utilizing data-driven insights to inform decision-making processes. Other common job titles include Data Scientists, BI Analysts, and Data Engineers, each playing a distinct yet interconnected role in the data analytics ecosystem.

Data visualization serves as a critical component within the realm of data analytics, facilitating the transformation of intricate datasets into visually digestible representations such as charts, graphs, and interactive dashboards. These visualizations not only enhance the understanding of complex data but also play a pivotal role in aiding decision-makers by presenting information in a visually appealing and intuitive manner.

Fundamental tools for data analytics include Python, R, Tableau, Power BI, SQL for database querying, and Excel for statistical analysis.

Data analytics can be challenging due to its multidisciplinary nature, necessitating proficiency in statistics, programming, and domain knowledge. Nevertheless, with dedication and resources, learners can overcome these challenges.

Data analytics involves extracting insights from existing datasets using descriptive and diagnostic analytics. In contrast, data science encompasses predictive modeling, machine learning, and advanced analytics to derive insights and build predictive models.

While full proficiency varies, individuals with a structured learning plan and dedication can establish a strong foundation in data analytics within six months.

Success in the field of data analytics necessitates a comprehensive skill set comprising technical prowess, analytical acumen, and effective communication skills. Proficiency in programming languages such as Python or R is indispensable for data manipulation and analysis, while a strong foundation in statistics and critical thinking enables analysts to derive meaningful insights from complex datasets. Furthermore, the ability to articulate findings and recommendations to non-technical audiences is crucial for driving organizational change and fostering collaboration.

According to Glassdoor, Data Analysts in Ethiopia receive highly competitive compensation, with an average annual salary of 110,000 ETB.

Internships provide hands-on experience, allowing learners to apply theoretical knowledge in professional settings, bridging the gap between academia and industry requirements.

In marketing, data analytics analyzes customer behavior, preferences, and demographics to optimize advertising strategies, personalize campaigns, and gauge marketing effectiveness, enabling data-driven decision-making for more targeted efforts.

Coding is essential in data analytics, notably with languages like Python and R. Proficiency in coding enhances data manipulation, analysis, and automation capabilities, although the extent of coding involvement varies depending on the specific role.

DataMites is a distinguished institution providing top-notch data analytics courses in Addis Ababa. With an emphasis on practical, industry-aligned skills, DataMites offers comprehensive training to equip individuals for success in the dynamic field of data analytics.

In retail, data analytics plays a crucial role in inventory management, demand forecasting, and analyzing customer behavior. Retailers leverage data to optimize pricing strategies, personalize customer experiences, and streamline supply chain operations, ultimately driving improved business performance.

Advancements in technology, including AI and machine learning, are reshaping the trajectory of data analytics. Automation, refined algorithms, and enhanced processing capabilities enable more sophisticated analysis, predictive modeling, and real-time decision-making, positioning data analytics as a pivotal force across various industries.

SQL (Structured Query Language) is a specialized language primarily used for managing and querying databases, serving as a subset within the broader field of data analytics. It focuses specifically on tasks related to database management, such as data retrieval, manipulation, and maintenance.

Data analytics is applied across industries. For instance, marketers leverage customer data for targeted campaigns, while healthcare professionals optimize patient care using predictive modeling and trend analysis.

View more

FAQ’S OF DATA ANALYST TRAINING IN ADDIS ABABA

In Addis Ababa, the fee for DataMites' Data Analytics Course spans from ETB 24,339 to ETB 74,843, accommodating a wide range of budgets and requirements. This pricing flexibility enables learners to choose a package that aligns with their educational objectives and financial constraints, promoting inclusivity and affordability.

DataMites stands out for its Certified Data Analyst Course in Addis Ababa due to its flexible learning options, job-oriented curriculum, esteemed instructors, exclusive practice lab access, vibrant learning community, lifetime course access, unlimited project opportunities, and comprehensive placement assistance, ensuring students acquire practical skills and excel in the field of data analytics.

DataMites' Data Analyst Course in Addis Ababa is designed as a 6-month program, requiring students to engage in 20 hours of learning each week. With over 200 learning hours available, participants receive extensive training in data analysis, equipping them for the workforce.

The certified data analyst program in Addis Ababa by DataMites offers comprehensive coverage of essential tools like Advanced Excel, MySQL, MongoDB, Git, GitHub, Atlassian BitBucket, Hadoop, Apache Pyspark, Anaconda, Google Collab, Numpy, Pandas, Tableau, and Power BI, empowering participants with diverse skills for effective data analysis.

In Addis Ababa, the Certified Data Analyst Course offered by DataMites focuses on advanced analytics and business insights. It's a No-Code program tailored for data analysts and managers to delve into advanced analytics without programming prerequisites. Python training is available as an optional component. The course undergoes continuous updates to meet evolving industry demands, ensuring a structured learning environment conducive to skill development.

DataMites' Certified Data Analyst Training in Addis Ababa is ideal for beginners and intermediate learners in data analytics. It focuses on career advancement, covering essential topics such as data analysis, data science, statistics, visual analytics, data modeling, and predictive modeling, preparing individuals for roles in the data analytics field.

The Certified Data Analyst Training in Addis Ababa includes modules on Data Analysis Fundamentals, Statistics Essentials, Data Analysis Associate, Advanced Data Analytics, Predictive Analytics with Machine Learning, SQL and MongoDB Database, Git Version Control, Big Data Foundations, Python Fundamentals, and Certified Business Intelligence (BI) Analyst topics.

Payment for DataMites' Certified Data Analytics Course in Addis Ababa is simple and convenient, with accepted methods including cash, debit card, check, credit card (Visa, Mastercard, American Express), EMI, PayPal, and net banking, providing flexibility and ease for participants.

Ashok Veda and Lead Mentors headline DataMites' Certified Data Analyst Course in Addis Ababa, providing unparalleled mentorship in Data Science and AI.

Yes, DataMites is dedicated to assisting you in understanding data analytics course topics in Addis Ababa. Our support services include personalized guidance, supplemental resources, and prompt responses to queries, ensuring your comprehension and success in mastering the course material.

With the Flexi Pass option available for the Certified Data Analyst Course in Addis Ababa, participants can enjoy the freedom to learn at their own pace and convenience, making it ideal for individuals with varied schedules and commitments.

DataMites' Certified Data Analyst Course in Addis Ababa utilizes a case study-based approach, allowing participants to explore diverse data analysis scenarios, develop critical thinking skills, and apply theoretical knowledge in practical contexts effectively.

DataMites' data analytics courses in Addis Ababa offer diverse learning methods, including Online Data Analytics Training in Addis Ababa or Self-Paced Training, allowing participants to choose the mode that best suits their learning style and availability for a personalized and efficient learning experience.

Should you miss a data analytics session in Addis Ababa, DataMites provides solutions to keep you on track. Access session recordings, supplementary materials, and engage with instructors and peers for assistance. With these resources, you can ensure you don't miss out on valuable learning opportunities.

Upon successful completion of the Certified Data Analyst Course in Addis Ababa, aspirants will receive IABAC Certification, recognizing their expertise in data analytics and opening doors to lucrative career opportunities.

Please carry a valid photo ID such as a national ID card or driver's license to data analytics training sessions. This is mandatory for receiving your participation certificate and scheduling certification exams. Your adherence to this policy is important.

In Addis Ababa, structured data analytics career mentoring sessions offer personalized support and guidance. They consist of individual coaching sessions with experienced mentors, career assessment tools, goal-setting frameworks, skill enhancement strategies, networking opportunities, and ongoing assistance to help participants chart a successful career path in data analytics.

Yes, DataMites provides internships as part of the Certified Data Analyst Course in Addis Ababa. Learners collaborate with esteemed Data Science companies, gaining practical exposure to industry challenges. With guidance from DataMites experts and mentors, participants acquire essential skills and experience, preparing them for successful careers in data analytics.

Absolutely, DataMites in Addis Ababa provides live projects alongside the data analyst course, featuring 5+ capstone projects and 1 client/live project. These practical experiences allow participants to build a robust portfolio and showcase their skills to potential employers in the field of data analytics.

Yes, the Certified Data Analyst Course provided by DataMites is highly respected in Addis Ababa, offering the most comprehensive program for those without coding backgrounds. With a 3-month internship in an AI Company, an experience certificate, and prestigious IABAC Certification, participants receive exceptional training from expert faculty, making it indispensable for career growth.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

Global CERTIFIED DATA ANALYST COURSE Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog