DATA ANALYST CERTIFICATION AUTHORITIES

COURSE FEATURES

DATA ANALYST LEAD MENTORS

DATA ANALYST COURSE FEE IN ANKARA, TURKEY

Live Virtual

Instructor Led Live Online

TRY 51,560
TRY 36,437

  • IABAC® Certification
  • 6-Month | 200+ Learning Hours
  • 20 HOURS LEARNING A WEEK
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

TRY 25,780
TRY 20,879

  • Self Learning + Live Mentoring
  • IABAC® Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA ANALYST ONLINE CLASSES IN ANKARA

BEST CERTIFIED DATA ANALYST CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA ANALYST COURSE

Why DataMites Infographic

SYLLABUS OF DATA ANALYST COURSE IN ANKARA

MODULE 1: DATA ANALYSIS FOUNDATION

• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain

MODULE 2: CLASSIFICATION OF ANALYTICS

• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics

MODULE 3: CRIP-DM Model

• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
Modeling, Evaluation, Deploying,Monitoring

MODULE 4: UNIVARIATE DATA ANALYSIS

• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.

MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS

• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot

MODULE 6: BI-VARIATE DATA ANALYSIS

• Scatter Plots
• Regression Analysis
• Correlation Coefficients

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES

• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

  • Introduction to Statistics
  • Descriptive And Inferential Statistics
  • Basic Terms Of Statistics
  • Types Of Data

MODULE 2 : HARNESSING DATA 

  • Random Sampling
  • Sampling With Replacement And Without Replacement
  • Cochran's Minimum Sample Size
  • Types of Sampling
  • Simple Random Sampling
  • Stratified Random Sampling
  • Cluster Random Sampling
  • Systematic Random Sampling
  • Multi stage Sampling
  • Sampling Error
  • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

  • Exploratory Data Analysis Introduction
  • Measures Of Central Tendencies: Mean, Median And Mode
  • Measures Of Central Tendencies: Range, Variance And Standard Deviation
  • Data Distribution Plot: Histogram
  • Normal Distribution & Properties
  • Z Value / Standard Value
  • Empherical Rule  and Outliers
  • Central Limit Theorem
  • Normality Testing
  • Skewness & Kurtosis
  • Measures Of Distance: Euclidean, Manhattan And MinkowskiDistance
  • Covariance & Correlation

MODULE 4 : HYPOTHESIS TESTING 

  • Hypothesis Testing Introduction
  • P- Value, Critical Region
  • Types of Hypothesis Testing
  • Hypothesis Testing Errors : Type I And Type Ii
  • Two Sample Independent T-test
  • Two Sample Relation T-test
  • One Way Anova Test
  • Application of Hypothesis testing

MODULE 1: COMPARISION AND CORRELATION ANALYSIS

• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis

MODULE 2: VARIANCE AND FREQUENCY ANALYSIS

• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis

MODULE 3: RANKING ANALYSIS

• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis

MODULE 4: BREAK EVEN ANALYSIS

• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing

MODULE 5: PARETO (80/20 RULE) ANALSYSIS

• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis

MODULE 6: Time Series and Trend Analysis

• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis

MODULE 7: DATA ANALYSIS BUSINESS REPORTING

• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements

MODULE 1: DATA ANALYTICS FOUNDATION

• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity

MODULE 2: OPTIMIZATION MODELS

• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity

MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION

• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel

MODULE 4: DECISION MODELING

• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer

MODULE 1: MACHINE LEARNING INTRODUCTION

• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSSION

• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool

MODULE 3: ML ALGO: LOGISTIC REGRESSION

• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool

MODULE 4: ML ALGO: KNN

• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool

MODULE 5: ML ALGO: K MEANS CLUSTERING

• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering

MODULE 6: ML ALGO: DECISION TREE

• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool

MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool

MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)

• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool

MODULE 1: DATABASE INTRODUCTION

• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)

MODULE 2: SQL BASICS

• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS

• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table

MODULE 5: SQL JOINS

• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES

• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries

MODULE 7: DOCUMENT DB/NO-SQL DB

• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS

• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies

MODULE 2: POWER-BI BASICS

• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION

MODULE 3: DATA TRANSFORMATION TECHNIQUES

• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES

• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model

DATA ANALYST COURSE REVIEWS

ABOUT DATA ANALYST TRAINING IN ANKARA

Delve into the fascinating realm of Data Analytics, a domain at the forefront of technological innovation. The global data analytics market achieved a noteworthy USD 31,345.89 million in 2022, with a forecasted Compound Annual Growth Rate (CAGR) of 24.17%, propelling it to a substantial market valuation of USD 114,877.14 million by 2028.

In Ankara, the capital city of Turkey, the Data Analytics Industry is evolving in tandem with global advancements. The city's burgeoning technological landscape creates a demand for skilled individuals equipped to harness the power of data for informed decision-making.

Embark on a transformative learning journey with DataMites, the premier institute for Data Analytics Training in Ankara. Our Certified Data Analyst Course in Ankara is designed for beginners and intermediate learners, providing a career-oriented curriculum covering Data Analysis, Data Science Foundation, Statistics, Visual Analytics, Data Modeling, and Predictive Modeling. At DataMites, we prioritize not only skill acquisition but also industry recognition. The course includes IABAC Certification, ensuring that upon completion, you possess a recognized qualification that sets you apart in the dynamic field of Data Analytics.

Structured Learning Path at DataMites:

Embark on a methodical learning journey at DataMites, designed to cater to the needs of individuals in Ankara, progressing through three distinct phases.

Phase 1: Pre-Course Self-Study

Commence with pre-course self-study, featuring high-quality videos employing an accessible learning approach, laying the groundwork for subsequent modules.

Phase 2: 3-Month Live Training

Immerse yourself in an intensive 3-month live data anaphase, dedicating 20 hours weekly. Enjoy a comprehensive syllabus, hands-on projects, and guidance from expert trainers and mentors.

Phase 3: 3-Month Project Mentoring

Conclude with a 3-month project mentoring phase, participating in 5+ capstone projects. This phase includes a real-time internship and a client/live project, ultimately leading to IABAC and Data Analytics Internship Certifications.

Certified Data Analyst Courses in Ankara - Choosing DataMites 

Guided by Ashok Veda's Expertise:

DataMites stands as a beacon of education under the leadership of Ashok Veda, a seasoned professional with over 19 years of experience in Data Analytics and AI. As the Founder & CEO at Rubixe™, he brings unparalleled expertise to our educational offerings.

Innovative Course Structure:

Our program introduces a No-Code Program with an optional Python track, spanning a comprehensive 6-month duration. Dedicate 20 hours per week, accumulating a total of 200+ learning hours.

Global Certification and Learning Flexibility:

Attain industry recognition with IABAC® Certification. Embrace a flexible learning approach that seamlessly integrates online Data Analytics courses in Ankara with self-study, catering to your individual pace.

Hands-On Projects and Internship Opportunities:

Apply your knowledge in real-world scenarios with 5+ capstone projects and a client/live project. Engage in a valuable internship opportunity to gain practical experience.

Holistic Career Support:

Navigate your career path with end-to-end job support, personalized resume and data analytics interview preparation, job updates, and a network of valuable connections within DataMites' exclusive learning community.

Accessible Pricing and Scholarship Options:

Make quality education a reality with our affordable pricing structure. Data Analytics course fees in Ankara range from TRY 12,884 to TRY 39,618, with additional scholarship opportunities available to further support your educational journey.

The Data Analytics Industry in Ankara, the vibrant capital of Turkey, is experiencing a robust expansion, driven by the city's increasing technological advancements and a growing emphasis on data-driven decision-making across sectors. Ankara's dynamic business landscape creates a fertile ground for professionals seeking opportunities in the evolving field of Data Analytics.

In Ankara, Data Analysts are positioned as highly valued professionals in the job market, reflecting their critical role in deciphering and interpreting data for strategic decision-making. According to Salary Explorer, the average annual salary for a Data Analyst in Ankara is an impressive 105,000 TRY. 

Discover your potential with DataMites, the pinnacle of educational excellence in Ankara. Our Certified Data Analyst Course Training in Ankara, led by industry stalwart Ashok Veda, guarantees a strong foundation and IABAC Certification for global recognition.

DataMites offers a spectrum of courses beyond Data Analytics, including Python, Data Engineering, Data Science, Machine Learning, Artificial Intelligence, Tableau, and more. Broaden your skill set to meet Ankara's evolving technological demands, positioning yourself for career success.

ABOUT DATAMITES DATA ANALYST COURSE IN ANKARA

Practical applications of data analytics include fraud detection in finance, personalized marketing in e-commerce, predictive maintenance in manufacturing, healthcare data analysis for better patient outcomes, and optimizing supply chain logistics through data-driven insights.

Necessary skills encompass proficiency in programming languages (e.g., Python or R), statistical analysis, data visualization, database management, and critical thinking. Effective communication is vital for conveying insights to non-technical stakeholders.

Key roles include Data Analyst, Business Intelligence Analyst, Data Scientist, Database Administrator, and Machine Learning Engineer. Each position contributes to leveraging data for organizational decision-making in distinct ways.

Data analytics involves systematically examining raw data to derive meaningful insights, patterns, and trends. Using statistical and computational techniques, it transforms data into valuable information for informed decision-making across various industries.

The future of data analysis shows promise, driven by advancements in artificial intelligence, machine learning, and big data technologies. The increasing reliance on data-driven decision-making across industries is expected to create numerous opportunities for skilled professionals.

Typically, a bachelor's degree in a related field such as statistics, mathematics, computer science, or business is the minimum qualification. Some courses may consider candidates with relevant work experience or equivalent certifications.

To embark on a successful journey in data analytics, it is essential to master key tools. Proficiency in programming with Python or R facilitates data manipulation, while expertise in SQL is crucial for effective database management. Additionally, familiarity with data visualization tools like Tableau or Power BI enhances the presentation of insights, making the learning process comprehensive and hands-on.

The field of data analytics presents a multifaceted challenge, demanding expertise in statistics, programming, and a nuanced understanding of business dynamics. Navigating through diverse datasets to extract meaningful insights requires a robust skill set, making the course both intellectually stimulating and rewarding.

While achieving complete mastery in data analytics within six months is an ambitious goal, focused dedication, hands-on projects, and targeted learning can lead to a solid foundation and practical skills. The timeframe, however, depends on individual commitment and prior knowledge.

Analyzing vast datasets empowers cybersecurity professionals to detect anomalies and patterns, enabling them to stay ahead of potential breaches and fortify digital defenses.

To become a Data Analyst, one should acquire relevant education (often a bachelor's degree), develop proficiency in data analysis tools and programming languages, gain practical experience through internships or projects, and continuously update skills to stay abreast of industry trends.

Educators leverage this information to tailor learning experiences, enhance engagement, and optimize teaching methodologies, fostering a more effective and personalized educational landscape.

According to Payscale, the average annual salary for a Data Analyst in Ankara is an impressive 83,700 TRY. This competitive compensation reflects the growing demand for skilled professionals in the field, highlighting the pivotal role data analysts play in transforming raw data into actionable insights.

Internships bridge the gap between theoretical knowledge and practical application, offering hands-on experience with real-world projects. This immersion is essential for developing problem-solving capabilities, teamwork, and a holistic understanding of analytics in a professional setting.

Data analytics serves as a linchpin for identifying and thwarting threats in cybersecurity. Analyzing vast datasets enables the detection of anomalies and patterns, empowering cybersecurity professionals to stay ahead of potential breaches and fortify digital defenses.

Internships are pivotal in bridging the gap between theoretical knowledge and practical application in data analytics. Real-world projects offer hands-on experience, honing skills, and providing exposure to industry dynamics. This immersion is essential for developing problem-solving capabilities, teamwork, and a holistic understanding of analytics in a professional setting.

Data analytics transforms education by providing valuable insights into student performance, learning patterns, and predictive outcomes. Educators leverage this information to tailor learning experiences, enhance engagement, and optimize teaching methodologies, fostering a more effective and personalized educational landscape.

Begin your data analytics journey by enrolling in reputable courses or pursuing degrees in the field. Online platforms offer comprehensive programs. Engage in practical projects, collaborate with online communities, and stay updated on industry trends to solidify your skills. Continuous learning and hands-on experience are key to mastering data analytics.

Beginner-friendly Data Analytics projects include analyzing survey data, creating visualizations for demographic trends, or predicting sales using historical data. These projects offer a hands-on experience in data manipulation, visualization, and basic predictive modeling.

Starting with reputable courses or degrees, engaging in practical projects, collaborating with online communities, and staying updated on industry trends are essential steps. Continuous learning and hands-on experience play a key role in mastering data analytics.

View more

FAQ’S OF DATA ANALYST TRAINING IN ANKARA

The Data Analyst Course in Ankara  by DataMitesspans 6 months, involving 20 hours of weekly learning. With over 200 learning hours, it provides an extensive and in-depth exploration of data analytics concepts and skills.

Choose DataMites for its Certified Data Analyst Course in Ankara, offering flexible learning, job-centric curriculum, renowned instructors, an exclusive practice lab, a supportive learning community, and lifelong course access. The program includes unlimited projects and placement assistance for comprehensive skill development.

The Certified Data Analyst Course at DataMites in Ankara caters to beginners and intermediate learners in data analytics. It's a career-focused program offering a solid grounding in data analysis, data science fundamentals, statistics, visual analytics, data modeling, and predictive modeling.

In DataMites' certified data analyst training in Ankara, participants gain proficiency in crucial tools like Advanced Excel, MySQL, MongoDB, Git, GitHub, Atlassian BitBucket, Hadoop, Apache Pyspark, Anaconda, Google Collab, Numpy, Pandas, Tableau, and Power BI, ensuring a well-rounded skill set for effective data analysis.

The fee for DataMites' Data Analytics Course in Ankara ranges from TRY 12,884 to TRY 39,618. This pricing structure offers flexibility, accommodating various budgets while providing access to a comprehensive data analytics program tailored for career advancement in the field.

Certainly, DataMites is equipped to assist you in grasping data analytics course topics in Ankara, offering robust support for a thorough understanding of the subject matter.

Explore the Certified Data Analyst Training in Ankara, covering essential topics such as Data Analysis Foundation, Statistics Essentials, Data Analysis Associate, Advanced Data Analytics, Predictive Analytics with Machine Learning, Database (SQL and MongoDB), Version Control with Git, Big Data Foundation, Python Foundation, and Certified Business Intelligence (BI) Analyst.

DataMites in Ankara accepts a range of payment methods for the Certified Data Analytics Course, including cash, debit cards, checks, credit cards (Visa, Mastercard, American Express), EMI options, PayPal, and net banking. This diverse array of payment options offers convenience and flexibility to course participants.

DataMites' Certified Data Analyst Course in Ankara is spearheaded by Ashol Veda, an esteemed Data Science coach and AI expert, providing exceptional mentorship. The elite mentors and faculty members bring real-world experience from top companies and prestigious institutes such as IIMs, ensuring a high-quality and industry-relevant learning experience.

DataMites' Flexi Pass for the Certified Data Analyst Course in Ankara allows participants to select a schedule that suits them, offering training flexibility. This adaptable choice accommodates various timelines, enabling learners to maintain a work-life balance while pursuing their certification.

What distinguishes DataMites' Certified Data Analyst Course in Ankara is its specialized focus on advanced analytics and business insights. This NO-CODE program empowers data analytics and managers to learn advanced analytics without a programming background. The course is regularly updated to meet industry requirements, providing a structured and efficient learning journey.

The Certified Data Analyst Course at DataMites in Ankara adopts a practical, hands-on learning approach. With a curriculum emphasizing real-world projects and case studies, participants acquire practical experience, honing their proficiency in data analytics techniques and tools.

Participants in DataMites' data analytics courses in Ankara can opt for their preferred learning method: Online Data Analytics Training in Ankara or Self-Paced Training. This flexibility ensures individuals can choose the approach that aligns with their schedule and learning preferences.

In Ankara, a missed data analytics session is typically managed by providing access to recorded sessions. Participants can catch up on the content at their convenience, ensuring they don't miss essential material. This approach allows flexibility and ensures that individuals who couldn't attend a session in person can still benefit from the course content and stay on track with their learning objectives.

Participants are required to provide a valid photo ID, like a national ID card or driver's license, for data analytics training sessions. This is crucial for obtaining the participation certificate and scheduling relevant certification exams.

In Ankara, data analytics career mentoring sessions are designed for personalized guidance, involving one-on-one discussions with experienced mentors. Topics include skill development, industry insights, and career planning.

The Certified Data Analyst Course by DataMites holds significant value in Ankara. It's a comprehensive, non-coding program suitable for those without technical backgrounds. Featuring a 3-month AI company internship, experience certificate, expert faculty guidance, and prestigious IABAC Certification, it ensures a holistic education for a successful data analytics career.

Completing the Certified Data Analyst Course at DataMites in Ankara ensures aspirants receive IABAC Certification, globally acknowledged for validating their data analytics proficiency. This certification significantly boosts career prospects in the field.

DataMites' Data Analyst Course in Ankara emphasizes practical learning with 5+ Capstone Projects and a Client/Live Project. This approach provides hands-on experience, ensuring participants understand data analytics in real-world contexts comprehensively.

DataMites provides internship opportunities with its Certified Data Analyst Course in Ankara. Through exclusive partnerships with Data Science companies, learners apply knowledge in real-world scenarios, guided by dedicated experts and mentors, developing valuable data models for businesses.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

Global CERTIFIED DATA ANALYST COURSE Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog