Instructor Led Live Online
Self Learning + Live Mentoring
Customize Your Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: DATA ANALYSIS FOUNDATION
• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain
MODULE 2: CLASSIFICATION OF ANALYTICS
• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics
MODULE 3: CRIP-DM Model
• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling, Evaluation, Deploying,Monitoring
MODULE 4: UNIVARIATE DATA ANALYSIS
• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.
MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS
• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot
MODULE 6: BI-VARIATE DATA ANALYSIS
• Scatter Plots
• Regression Analysis
• Correlation Coefficients
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
MODULE 2 : HARNESSING DATA
MODULE 3 : EXPLORATORY DATA ANALYSIS
MODULE 4 : HYPOTHESIS TESTING
MODULE 1: COMPARISION AND CORRELATION ANALYSIS
• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis
MODULE 2: VARIANCE AND FREQUENCY ANALYSIS
• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis
MODULE 3: RANKING ANALYSIS
• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis
MODULE 4: BREAK EVEN ANALYSIS
• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing
MODULE 5: PARETO (80/20 RULE) ANALSYSIS
• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis
MODULE 6: Time Series and Trend Analysis
• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
MODULE 7: DATA ANALYSIS BUSINESS REPORTING
• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
MODULE 1: DATA ANALYTICS FOUNDATION
• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity
MODULE 2: OPTIMIZATION MODELS
• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity
MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION
• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel
MODULE 4: DECISION MODELING
• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool
MODULE 4: ML ALGO: KNN
• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering
MODULE 6: ML ALGO: DECISION TREE
• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool
MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool
MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
Data analytics entails extracting insights from raw data to guide decision-making and optimize processes, employing statistical analysis, machine learning, and data visualization techniques.
Certainly, there are abundant consulting opportunities within data analytics, offering services in strategizing, implementing, and optimizing data-driven solutions for businesses.
Projects provide hands-on experience, enabling learners to apply theoretical concepts to real-world data, fostering critical thinking, problem-solving skills, and reinforcing understanding through practical application.
Indeed, there is a considerable demand for jobs in data analytics across industries, driven by the escalating volume and complexity of generated data.
Essential skills for data analytics encompass proficiency in programming, statistical analysis, data visualization, critical thinking, and domain expertise.
Primary roles in data analytics careers include data analyst, data scientist, business intelligence analyst, and data engineer, each specializing in distinct aspects of data management and analysis.
The future of data analysis appears promising, propelled by advancements in artificial intelligence, machine learning, and big data technologies, leading to more advanced analytics capabilities and increased automation.
Data Analytics Internships play a vital role by providing practical experience, exposure to real-world datasets, and the chance to collaborate with professionals, facilitating the application of theoretical knowledge, skill enhancement, and networking essential for a successful data analytics career.
Essential tools for mastering data analytics include programming languages like Python or R, statistical software such as Excel or SPSS, data visualization tools like Tableau or Power BI, and database management systems like SQL.
DataMites delivers outstanding data analytics training in Gaborone, covering statistical methods, machine learning, and data visualization. Through hands-on projects and expert instructors, DataMites prepares students for successful careers in data analytics.
The data analytics course can pose challenges due to its multidisciplinary nature, necessitating proficiency in statistics, programming, and critical thinking skills.
Proficiency in data analytics within six months is achievable through focused study, practice, and hands-on projects, although mastery may require longer-term dedication and practical experience.
According to Payscale, Data Analysts in Gaborone earn a remarkable average annual salary of BWP 165,000.
Data analysts typically perform tasks such as gathering and cleansing data, conducting statistical analysis, creating data visualizations, and producing reports to extract insights and guide decision-making processes.
Data analytics intersects with machine learning by leveraging algorithms and statistical models to analyze data, uncover patterns, and make predictions or classifications. This enhances decision-making processes and automates tasks based on data-driven insights.
Typically, qualifications for a data analyst training include a bachelor's degree in fields like computer science, mathematics, statistics, or economics, coupled with proficiency in programming and statistical analysis.
Predictive analytics is applied by using historical data to develop models and algorithms that forecast future trends or events. This allows organizations to anticipate outcomes, make proactive decisions, and optimize strategies for better results.
Data analytics is employed in risk management by analyzing historical data to identify patterns or anomalies that signal potential risks or opportunities. Predictive models are then developed to anticipate and mitigate risks, aiding organizations in making informed decisions and implementing effective risk mitigation strategies.
While data analytics may require coding, the extent varies depending on the role and tasks. Basic coding skills in languages like Python or R are often necessary for tasks such as data manipulation, analysis, and visualization, but proficiency levels can vary based on job requirements.
Data analytics contributes to business expansion by providing actionable insights derived from data analysis. This enables organizations to identify growth opportunities, streamline processes, and make informed decisions that foster innovation and competitiveness.
Embark on your data analytics journey with DataMites' Certified Data Analyst Course in Gaborone, offering flexible learning formats, a curriculum designed for real-world applications, seasoned instructors, dedicated practice lab, engaged learning community, and lifetime access to resources. With opportunities for unlimited projects and placement assistance, DataMites ensures a comprehensive and impactful learning experience.
The Data Analyst Course in Gaborone provided by DataMites spans 6 months, with a weekly commitment of 20 learning hours. With over 200 learning hours in total, participants gain thorough training in data analytics to succeed in the industry.
DataMites' certified data analyst training in Gaborone includes tools such as Power BI, essential for creating interactive data dashboards and reports.
Beginners and intermediate learners keen on data analytics can enroll in DataMites' Certified Data Analyst Training in Gaborone. Covering essential areas like data analysis, statistics, visual analytics, and predictive modeling, the program readies participants for successful careers in the field.
DataMites' Certified Data Analyst Course in Gaborone is tailored for advanced analytics and business insights, offering a NO-CODE option for learners to delve into analytics without coding prerequisites.
DataMites' Data Analytics Course in Gaborone is priced between BWP 5804 and BWP 17849. This comprehensive program provides participants with vital skills for excelling in data analytics. It accommodates various budgets, ensuring accessibility to high-quality education in market.
Yes, DataMites is dedicated to supporting participants in comprehending data analytics course topics in Gaborone. Through experienced educators, interactive resources, mentorship, and a collaborative learning environment, participants receive ongoing assistance to ensure their success in the program.
Participants in the Certified Data Analyst Training in Gaborone will explore various topics including Data Analysis Foundation, Statistics Essentials, Data Analysis Associate, Advanced Data Analytics, Predictive Analytics with Machine Learning, Database Management with SQL and MongoDB, Version Control using Git, Big Data Foundation, Python Foundation, and Certified Business Intelligence (BI) Analyst.
Payment options for the Certified Data Analytics Course in Gaborone at DataMites include cash, debit card, check, credit card, EMI, PayPal, Visa, Mastercard, American Express, and net banking.
Leading the Certified Data Analyst Training at DataMites in Gaborone are Ashok Veda and a team of elite mentors. With extensive experience in Data Science and AI, these trainers offer participants invaluable insights and guidance derived from their real-world experience at leading companies and esteemed institutes such as IIMs.
The Flexi Pass for the Certified Data Analyst Course in Gaborone at DataMites grants participants the freedom to structure their learning experience. This option allows learners to access course materials and attend sessions at their convenience, effectively balancing their studies with other commitments.
In its Certified Data Analyst Course in Gaborone, DataMites adopts a methodology centered around case studies. Participants immerse themselves in analyzing real-world data sets, enhancing their data analysis skills through practical application. This approach fosters deeper understanding and equips learners to tackle complex data challenges with confidence.
In the event of missing a data analytics session in Gaborone, DataMites provides recorded sessions for flexible viewing. Additionally, supplementary study materials and resources are accessible to help participants fill any knowledge gaps, ensuring they stay on track with the course curriculum despite missing a session.
Yes, participants who successfully complete the Certified Data Analyst Course in Gaborone at DataMites receive the prestigious IABAC Certification. This certification validates their proficiency in data analytics, enhancing their professional credibility and unlocking lucrative career opportunities in industries that prioritize data-driven decision-making.
Participants are expected to bring valid photo identification, such as a national ID card or driver's license, to the training sessions. This documentation is essential for receiving the participation certificate and scheduling certification exams. It ensures proper identification and accountability throughout the training program.
DataMites in Gaborone structures its mentoring sessions for data analytics careers to provide personalized guidance and support. These sessions involve one-on-one meetings with experienced mentors who offer tailored advice, insights, and career development strategies to help individuals advance in their data analytics careers.
Absolutely, DataMites' Certified Data Analyst Course in Gaborone carries significant weight. It stands out as the most comprehensive non-coding course, providing accessibility to data analytics for individuals without technical backgrounds. With a three-month internship at an AI company, an experience certificate, and the prestigious IABAC Certification, participants garner industry recognition and abundant career opportunities.
DataMites offers data analytics courses in Gaborone through various learning methods, including online data analytics training in Gaborone and self-paced learning. Participants can opt for interactive online sessions or progress through course materials independently, providing flexibility to learn at their own pace and convenience.
Yes, DataMites does offer internships alongside the Certified Data Analyst Training in Gaborone. Learners benefit from exclusive collaborations with reputable Data Science companies, gaining practical experience under expert mentorship. This internship program enables them to apply theoretical knowledge in practical settings, fostering professional growth and industry relevance.
Indeed, DataMites incorporates live projects into its data analyst course in Gaborone. Participants engage in over 5 capstone projects and collaborate on at least one client/live project. These hands-on initiatives provide invaluable experience in applying data analytics skills to real-world scenarios, enhancing participants' proficiency and competitiveness in the industry.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.