Instructor Led Live Online
Self Learning + Live Mentoring
Customize Your Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: DATA ANALYSIS FOUNDATION
• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain
MODULE 2: CLASSIFICATION OF ANALYTICS
• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics
MODULE 3: CRIP-DM Model
• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling, Evaluation, Deploying,Monitoring
MODULE 4: UNIVARIATE DATA ANALYSIS
• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.
MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS
• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot
MODULE 6: BI-VARIATE DATA ANALYSIS
• Scatter Plots
• Regression Analysis
• Correlation Coefficients
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
MODULE 2 : HARNESSING DATA
MODULE 3 : EXPLORATORY DATA ANALYSIS
MODULE 4 : HYPOTHESIS TESTING
MODULE 1: COMPARISION AND CORRELATION ANALYSIS
• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis
MODULE 2: VARIANCE AND FREQUENCY ANALYSIS
• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis
MODULE 3: RANKING ANALYSIS
• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis
MODULE 4: BREAK EVEN ANALYSIS
• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing
MODULE 5: PARETO (80/20 RULE) ANALSYSIS
• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis
MODULE 6: Time Series and Trend Analysis
• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
MODULE 7: DATA ANALYSIS BUSINESS REPORTING
• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
MODULE 1: DATA ANALYTICS FOUNDATION
• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity
MODULE 2: OPTIMIZATION MODELS
• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity
MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION
• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel
MODULE 4: DECISION MODELING
• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool
MODULE 4: ML ALGO: KNN
• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering
MODULE 6: ML ALGO: DECISION TREE
• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool
MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool
MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
Data analytics is the process of examining and interpreting large sets of data in order to uncover useful insights, patterns, and trends that can inform decision-making.
Yes, anyone can pursue a career in data analytics with the right skills, knowledge, and training. However, it is important to have a strong foundation in mathematics, statistics, and computer programming to succeed in this field.
Essential competencies for data analytics include proficiency in statistics, data manipulation and analysis, programming languages such as Python or R, critical thinking, problem-solving, data visualization, and effective communication.
Data analytics provides businesses with insights into their operations and customers, which can be used to make data-driven decisions and improve overall performance.
Data analytics relies on a variety of tools and techniques to manipulate and analyze large sets of data. Some commonly used tools include SQL, Python, R, Tableau, Power BI, and Excel. Techniques used in data analytics include data mining, data visualization, predictive modeling, and machine learning.
In Singapore, the training fee for Data Analytics courses varies based on the program and institution, with a range of 646.24 SGD to 1454.04 SGD.
When it comes to learning data analytics in Singapore, DataMites is considered one of the best institutes in the city. With a comprehensive curriculum that covers all the key topics and hands-on training provided by experienced faculty members, DataMites' data analytics courses in Singapore are designed to provide students with the skills and knowledge they need to succeed in this exciting field. The institute also offers flexible schedules and a range of certification programs to suit different career goals and skill levels.
The field of data analytics has seen tremendous growth in recent years, and as a result, there is a high demand for skilled data analysts across various industries. With the increasing amount of data available, companies require professionals who can effectively analyze and interpret data to drive business decisions. A career in data analytics can offer a wide range of job opportunities, including roles such as data analyst, data scientist, business analyst, and more. Individuals with a strong foundation in data analytics and the ability to apply analytical techniques to real-world problems can expect to have a bright future in this field.
The DataMites Certified Data Analyst Course is an excellent choice for those interested in learning data analytics. The program covers all the fundamental concepts and skills required for a successful career in data analytics, including programming languages, statistical analysis, data visualization, and machine learning. The course is designed by industry experts and provides hands-on experience with real-world datasets, making it a highly valuable choice for those aspiring to become data analysts.
According to glassdoor.com, the average salary for a data analyst in Singapore is 13,550 SGD a month.
DataMites offers several advantages in their data analytics course, including comprehensive coverage of key data analytics concepts and skills, hands-on experience with real-world projects, personalized mentoring and guidance from industry experts, and globally recognized certifications. Additionally, the program is designed to provide flexibility, with online and offline learning options, as well as multiple payment plans to suit individual needs. Overall, DataMites' data analytics course provides a valuable opportunity for individuals to acquire the necesSGDy skills and expertise to excel in the field of data analytics.
DataMites' certified data analyst training in Singapore stands out for several reasons. Firstly, the program is designed by industry experts and covers all essential concepts and skills required for a career in data analytics, including programming languages, statistical analysis, data visualization, and machine learning. Secondly, the course provides hands-on experience with real-world datasets, making it a valuable choice for aspiring data analysts. Additionally, the certification is approved by IABAC, a global organization that ensures the quality of education. Finally, the program offers a Flexi-Pass option, allowing students to learn at their own pace and convenience.
The DataMites' comprehensive data analytics training program spans over six months and includes 20 hours of weekly instruction.
Even though DataMites® offers in-person training, it is currently only available in India. However, we also offer online Certified Data Analytics Courses in Singapore that are equally impactful and immersive.
DataMites offers a Certified Data Analyst Course suitable for individuals who want to pursue a career in data science or data analytics without prior coding knowledge. The course offers a complete introduction to the subject, making it an ideal choice for beginners. Enroll now in the Data Analytics Training in Singapore by DataMites if you're interested in learning analytics.
The cost of DataMites' certified data analytics training may depend on the mode of training chosen. In Singapore, the usual range for a certified data analytics course is from 452.37 SGD to 1130.92 SGD.
DataMites offers its students the convenience of making payments through multiple channels. Accepted modes of payment include cash, debit cards, checks, and credit cards like Visa, Mastercard, American Express, as well as PayPal and net banking.
Upon successful completion of the DataMites Certified Data Analyst Training, students will be awarded an IABAC® certification, which is globally recognized and validates their expertise and knowledge in data analytics. IABAC is a renowned professional organization that offers internationally recognized certification programs for data analysts, business analysts, and data scientists.
If you opt to take the online exam at exam.iabac.org, you will receive the results instantly. The issuance of e-certificates typically takes 7-10 business days as per the guidelines provided by IABAC.
Flexi-Pass is an exceptional feature offered by DataMites that enables students to attend their classes at their own pace. The feature provides access to live and recorded sessions of the enrolled course, which remains valid for a specified duration from the date of enrollment. This is a great advantage for individuals with busy schedules or job commitments who cannot attend regular classes.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.