DATA ANALYST CERTIFICATION AUTHORITIES

COURSE FEATURES

DATA ANALYST LEAD MENTORS

DATA ANALYST COURSE FEE IN WELLINGTON, NEW ZEALAND

Live Virtual

Instructor Led Live Online

NZ 3,220
NZ 0

  • IABAC® Certification
  • 6-Month | 200+ Learning Hours
  • 20 HOURS LEARNING A WEEK
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

NZ 1,610
NZ 0

  • Self Learning + Live Mentoring
  • IABAC® Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA ANALYST ONLINE CLASSES IN WELLINGTON

BEST CERTIFIED DATA ANALYST CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA ANALYST COURSE

Why DataMites Infographic

SYLLABUS OF DATA ANALYST COURSE IN WELLINGTON

MODULE 1: DATA ANALYSIS FOUNDATION

• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain

MODULE 2: CLASSIFICATION OF ANALYTICS

• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics

MODULE 3: CRIP-DM Model

• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
Modeling, Evaluation, Deploying,Monitoring

MODULE 4: UNIVARIATE DATA ANALYSIS

• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.

MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS

• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot

MODULE 6: BI-VARIATE DATA ANALYSIS

• Scatter Plots
• Regression Analysis
• Correlation Coefficients

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES

• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

  • Introduction to Statistics
  • Descriptive And Inferential Statistics
  • Basic Terms Of Statistics
  • Types Of Data

MODULE 2 : HARNESSING DATA 

  • Random Sampling
  • Sampling With Replacement And Without Replacement
  • Cochran's Minimum Sample Size
  • Types of Sampling
  • Simple Random Sampling
  • Stratified Random Sampling
  • Cluster Random Sampling
  • Systematic Random Sampling
  • Multi stage Sampling
  • Sampling Error
  • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

  • Exploratory Data Analysis Introduction
  • Measures Of Central Tendencies: Mean, Median And Mode
  • Measures Of Central Tendencies: Range, Variance And Standard Deviation
  • Data Distribution Plot: Histogram
  • Normal Distribution & Properties
  • Z Value / Standard Value
  • Empherical Rule  and Outliers
  • Central Limit Theorem
  • Normality Testing
  • Skewness & Kurtosis
  • Measures Of Distance: Euclidean, Manhattan And MinkowskiDistance
  • Covariance & Correlation

MODULE 4 : HYPOTHESIS TESTING 

  • Hypothesis Testing Introduction
  • P- Value, Critical Region
  • Types of Hypothesis Testing
  • Hypothesis Testing Errors : Type I And Type Ii
  • Two Sample Independent T-test
  • Two Sample Relation T-test
  • One Way Anova Test
  • Application of Hypothesis testing

MODULE 1: COMPARISION AND CORRELATION ANALYSIS

• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis

MODULE 2: VARIANCE AND FREQUENCY ANALYSIS

• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis

MODULE 3: RANKING ANALYSIS

• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis

MODULE 4: BREAK EVEN ANALYSIS

• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing

MODULE 5: PARETO (80/20 RULE) ANALSYSIS

• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis

MODULE 6: Time Series and Trend Analysis

• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis

MODULE 7: DATA ANALYSIS BUSINESS REPORTING

• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements

MODULE 1: DATA ANALYTICS FOUNDATION

• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity

MODULE 2: OPTIMIZATION MODELS

• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity

MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION

• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel

MODULE 4: DECISION MODELING

• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer

MODULE 1: MACHINE LEARNING INTRODUCTION

• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSSION

• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool

MODULE 3: ML ALGO: LOGISTIC REGRESSION

• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool

MODULE 4: ML ALGO: KNN

• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool

MODULE 5: ML ALGO: K MEANS CLUSTERING

• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering

MODULE 6: ML ALGO: DECISION TREE

• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool

MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool

MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)

• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool

MODULE 1: DATABASE INTRODUCTION

• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)

MODULE 2: SQL BASICS

• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS

• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table

MODULE 5: SQL JOINS

• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES

• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries

MODULE 7: DOCUMENT DB/NO-SQL DB

• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS

• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies

MODULE 2: POWER-BI BASICS

• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION

MODULE 3: DATA TRANSFORMATION TECHNIQUES

• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES

• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model

DATA ANALYST COURSE REVIEWS

ABOUT DATA ANALYST TRAINING IN WELLINGTON

The Data Analytics course in Wellington offers comprehensive training in statistical analysis, data visualization, and machine learning techniques, equipping students with the skills to extract valuable insights from vast datasets and drive data-informed decision-making across various industries. Based on findings from Acumen Research and Consulting, the global data analytics market achieved a value of USD 31.8 billion in 2021. Projections indicate substantial growth, with expectations for the market to soar to USD 329.8 billion by 2030, demonstrating an impressive compound annual growth rate (CAGR) of 29.9% from 2022 through 2030. 

The data analytics sector in Wellington is witnessing substantial growth, mirroring global trends. The increasing digitization and rising need for data-driven insights across diverse industries highlight the demand for proficient professionals capable of maximizing the value of data.

DataMites, a renowned global institution, is pleased to announce the launch of a comprehensive 6-month Certified Data Analyst Course in Wellington. This extensive program, consisting of 200 hours, encompasses fundamental subjects including No-code, MySQL, Power BI, Excel, and Tableau, providing a deeply engaging and educational journey. Noteworthy is the institute's international accreditation from IABAC, guaranteeing a certification recognized globally upon the course's successful culmination. With a decade of experience, DataMites has effectively trained over 50,000+ learners across the globe.

Offering online data analyst training in Wellington, DataMites imparts invaluable knowledge in the field. The curriculum, augmented with internship assistance and hands-on projects, significantly contributes to the holistic career advancement of students.

DataMites offers certified data analyst training in Wellington through a structured journey comprising three phases, ensuring a thorough and rewarding learning experience.

In the initial phase, participants embark on a self-paced pre-course study, gaining access to high-quality instructional videos to establish a strong foundation before progressing to the formal training modules.

Moving to the second phase, a rigorous three-month period involves immersive live training sessions, demanding a commitment of 20 hours per week. Seasoned trainers and mentors lead participants through a comprehensive curriculum, supplemented by hands-on projects to reinforce their learning.

The final phase spans another three months and emphasizes practical application. Participants actively participate in project mentoring, completing 10 capstone projects. This stage integrates real-world data analyst internship opportunities in Wellington, concluding with the successful delivery of a client/live project. Upon completion of this phase, participants are awarded IABAC and Internship Certifications.

DataMites is set to introduce its accredited data analyst program in Wellington, offering an immersive educational journey enriched with unique attributes.

Expert Leadership: Led by Ashok Veda, a seasoned professional with over 19 years of experience in Data Analytics and AI, the program prioritizes Leadership Excellence to ensure top-tier guidance in the field.

Key Program Features: The course boasts a 6-month No-Code Program, requiring 20 hours of weekly commitment, totaling over 200 learning hours.

Certification: Successful participants will earn the globally recognized IABAC® Certification, a testament to their expertise in the field.

Flexible Learning Options: The course offers flexibility through online data analytics courses in Wellington and self-paced study alternatives.

Practical Learning and Hands-on Experience: Emphasizing practical exposure, participants engage in 10 capstone projects and 1 client/live project, enhancing their skills. DataMites provides data analytics course with Internship opportunities in Wellington to further bolster practical expertise.

Comprehensive Career Support: The program provides extensive career assistance, including job placement aid, personalized resume assistance, interview preparation, and ongoing job updates.

Community Engagement: Participants join an exclusive learning community, fostering collaboration and knowledge sharing.

Affordability: With data analytics course fees in Wellington ranging from NZD 677 to NZD 2,190. The program aims to be cost-effective, ensuring accessibility for aspiring data analysts.

Wellington, the capital city of New Zealand, is nestled between rolling hills and a picturesque harbour, offering a vibrant mix of culture, cuisine, and natural beauty. Renowned for its creative scene and innovative spirit, Wellington is also a hub for the thriving IT sector, boasting a dynamic community of tech companies and startups driving forward technological advancements in the region.

The future of data analytics in Wellington shines bright as companies harness cutting-edge technologies and collaborate with top talent, propelling innovation and driving insightful decision-making across diverse industries, from government to business. Furthermore, the data analyst's salary in Wellington is NZD 63,324 per year according to an Indeed report.

Begin an enriching educational journey by enrolling in DataMites Institute's certified data analyst training in Wellington. Our meticulously designed curriculum guarantees the acquisition of vital skills needed to thrive in the ever-evolving field of data analytics. Join DataMites today to position yourself as a pivotal figure in the ongoing revolution of data analytics, with a variety of courses encompassing Data Science, MlOps, Machine Learning, Artificial Intelligence, Tableau, Deep Learning, Python, and Data Mining, ensuring holistic skill enhancement.

ABOUT DATAMITES DATA ANALYST COURSE IN WELLINGTON

At its core, data analytics centres on extracting meaningful insights from data through analysis, enabling informed decision-making for businesses and organizations.

A data analyst is tasked with interpreting data, generating comprehensive reports, and effectively communicating insights to aid organizations in making informed, data-driven decisions.

Essential skills for excelling in data analytics include proficiency in statistical analysis, data visualization, programming languages like Python or R, and adeptness in database management.

Data analysts engage in various tasks, including collecting, processing, and analyzing data, as well as creating detailed reports and presenting actionable insights to facilitate informed decision-making.

The field of data analytics presents extensive opportunities across diverse industries such as finance, healthcare, marketing, and technology.

Key job roles in data analytics include Data Analyst, Business Analyst, Data Scientist, and Machine Learning Engineer, each contributing uniquely to the field.

The future trajectory of data analysis entails heightened automation, integration of AI technologies, and an escalating demand for skilled professionals adept at navigating the evolving analytical landscape.

While requirements vary, a common prerequisite for enrolling in a data analyst course is a bachelor's degree in a related field.

Critical tools for learning data analytics include Excel, SQL, Python/R programming languages, and visualization tools like Tableau.

While acknowledged as challenging, pursuing a data analytics course offers substantial rewards, requiring analytical thinking and a commitment to continuous learning.

SQL proficiency is crucial for data analysts as it enables efficient querying and manipulation of databases, facilitating effective data analysis and extraction of insights.

Yes, achieving proficiency in data analytics within six months is feasible through focused learning and practical application of skills.

Certified Data Analyst courses provide industry-recognized credentials, validating skills in data analysis and enhancing professional credibility and marketability.

Internships are vital for gaining real-world experience and exposure to industry practices, facilitating practical skill development and enhancing the learning process in data analytics.

Projects enrich the learning experience in data analytics by providing opportunities to apply theoretical knowledge in practical scenarios, fostering hands-on experience and skill development.

Data analytics offers a wide array of career opportunities, including roles in data engineering, business intelligence, and data science, catering to diverse interests and skill sets.

While advantageous, proficiency in Python is not always mandatory for data analysts; however, competency in at least one programming language is recommended for effective data analysis.

Coding is an integral part of data analytics, with varying levels of involvement depending on the complexity of the analysis and the specific tasks at hand.

Yes, data analytics is universally acknowledged as a challenging field due to its multidisciplinary nature and the continuous advancements in technology, offering rewarding career prospects for those willing to invest in their skills and knowledge.

The data analyst's salary in Wellington is NZD 63,324 per year according to an Indeed report.

View more

FAQ’S OF DATA ANALYST TRAINING IN WELLINGTON

DataMites distinguishes itself by offering premier data analyst certification training in Wellington. The program not only equips learners with essential data interpretation skills but also provides tangible evidence of proficiency in data analytics. This certification holds significant value in the job market, making DataMites a desirable option for individuals seeking rewarding careers with multinational corporations. Moreover, beyond basic certification, DataMites' program showcases the ability to meet professional standards in specific job roles, thereby elevating its standing in the field of data analytics education.

DataMites' Certified Data Analyst Course caters to individuals with aspirations in data analytics or data science, regardless of their coding background. The course welcomes participants from all walks of life, ensuring accessibility and inclusivity. With a meticulously crafted curriculum, the program offers a comprehensive understanding of the subject matter, making it an ideal entry point for those intrigued by the analytics realm.

The Data Analyst Course offered by DataMites in Wellington spans approximately six months, requiring a commitment of over 200 hours of learning. Participants are encouraged to dedicate approximately 20 hours per week to their studies, ensuring thorough exploration and comprehension of the course content.

The syllabus of the Certified Data Analyst Course in Wellington includes instruction on the following tools:

  • MySQL
  • Anaconda
  • MongoDB
  • Hadoop
  • Apache PySpark
  • Tableau
  • Power BI
  • Google BERT
  • Tensor Flow
  • Advanced Excel
  • Numpy
  • Pandas
  • Google Colab
  • GitHub
  • Atlassian BitBucket 

DataMites' Data Analytics Course in Wellington provides a flexible learning environment, practical curriculum, esteemed instructors, and access to an exclusive practice lab. With lifetime access, continuous growth opportunities, hands-on projects, and dedicated placement support, DataMites offers a comprehensive learning experience for aspiring data analysts.

The DataMites' Data Analytics course fee in Wellington varies from NZD 677 to NZD 2,190.

Yes, DataMites in Wellington offers substantial one-on-one support from instructors to enhance participants' understanding of data analytics course content, ensuring an optimal learning journey.

DataMites' Certified Data Analyst Course in Wellington covers a broad range of topics, including Data Analysis Foundation, Statistics Essentials, Data Analysis Associate, Advanced Data Analytics, Predictive Analytics with Machine Learning, Database: SQL and MongoDB, Version Control with Git, Big Data Foundation, and Python Foundation, culminating in the Certified Business Intelligence (BI) Analyst module.

DataMites in Wellington is led by Ashok Veda, a highly esteemed Data Science coach and AI expert. The faculty includes elite mentors with hands-on experience from prestigious companies and renowned institutes like IIMs, ensuring exceptional mentorship throughout the learning journey.

The Flexi Pass for Data Analytics Course in Wellington allows participants to choose batches according to their schedules, offering flexibility in training and enabling learners to customize their learning experience.

Yes, upon successful completion of DataMites' Certified Data Analyst Course in Wellington, participants receive the prestigious IABAC Certification, validating their expertise in data analytics and enhancing their credibility in the industry.

DataMites adopts a results-driven approach, incorporating hands-on practical sessions, real-world case studies, and industry-relevant projects to ensure participants acquire both theoretical knowledge and practical skills essential for the dynamic field of data analytics.

DataMites provides flexibility through options like Online Data Analytics Training in Wellington or Self-Paced Training, allowing participants to choose between instructor-led online sessions or self-paced learning based on their preferences and schedule.

If a participant misses a session during data analytics training in Wellington, DataMites provides recorded sessions, enabling individuals to catch up on missed content at their convenience, supporting continuous learning.

To attend DataMites' data analytics training in Wellington, participants need to bring a valid photo ID, such as a national ID card or driver's license, essential for obtaining the participation certificate and scheduling relevant certification exams.

In Wellington, DataMites organizes personalized data analytics career mentoring sessions where experienced mentors offer guidance on industry trends, resume building, and interview preparation, focusing on individual career goals to provide tailored advice.

Yes, the Certified Data Analyst Course offered by DataMites is highly valuable in Wellington, offering a comprehensive non-coding course tailored for individuals from non-technical backgrounds, including a 3-month internship, expert training, and leading to the prestigious IABAC Certification.

Yes, DataMites in Wellington offers an internship alongside the Certified Data Analyst Course through collaborations with prominent Data Science companies, providing practical experience and expert guidance.

Yes, DataMites in Wellington integrates live projects into the data analyst course, allowing participants to apply their skills in real-world scenarios, enhancing practical proficiency and readiness for the industry.

In Wellington, DataMites accepts various payment methods, including cash, debit card, credit card (Visa, Mastercard, American Express), check, EMI, PayPal, and net banking, ensuring convenience and flexibility for participants.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

Global CERTIFIED DATA ANALYST COURSE Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog