Instructor Led Live Online
Self Learning + Live Mentoring
Customize Your Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: DATA SCIENCE ESSENTIALS
• Introduction to Data Science
• Evolution of Data Science
• Big Data Vs Data Science
• Data Science Terminologies
• Data Science vs AI/Machine Learning
• Data Science vs Analytics
MODULE 2: DATA SCIENCE DEMO
• Business Requirement: Use Case
• Data Preparation
• Machine learning Model building
• Prediction with ML model
• Delivering Business Value.
MODULE 3: ANALYTICS CLASSIFICATION
• Types of Analytics
• Descriptive Analytics
• Diagnostic Analytics
• Predictive Analytics
• Prescriptive Analytics
• EDA and insight gathering demo in Tableau
MODULE 4: DATA SCIENCE AND RELATED FIELDS
• Introduction to AI
• Introduction to Computer Vision
• Introduction to Natural Language Processing
• Introduction to Reinforcement Learning
• Introduction to GAN
• Introduction to Generative Passive Models
MODULE 5: DATA SCIENCE ROLES & WORKFLOW
• Data Science Project workflow
• Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
• Data Science Project stages.
MODULE 6: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS
• Data Science in Finance and Banking
• Data Science in Retail
• Data Science in Health Care
• Data Science in Logistics and Supply Chain
• Data Science in Technology Industry
• Data Science in Manufacturing
• Data Science in Agriculture
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1: OVERVIEW OF STATISTICS
• Introduction to Statistics
• Descriptive And Inferential Statistics
• Basic Terms Of Statistics
• Types Of Data
MODULE 2: HARNESSING DATA
• Random Sampling
• Sampling With Replacement And Without Replacement
• Cochran's Minimum Sample Size
• Types of Sampling
• Simple Random Sampling
• Stratified Random Sampling
• Cluster Random Sampling
• Systematic Random Sampling
• Multi stage Sampling
• Sampling Error
• Methods Of Collecting Data
MODULE 3: EXPLORATORY DATA ANALYSIS
• Exploratory Data Analysis Introduction
• Measures Of Central Tendencies: Mean,Median And Mode
• Measures Of Central Tendencies: Range, Variance And Standard Deviation
• Data Distribution Plot: Histogram
• Normal Distribution & Properties
• Z Value / Standard Value
• Empirical Rule and Outliers
• Central Limit Theorem
• Normality Testing
• Skewness & Kurtosis
• Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
• Covariance & Correlation
MODULE 4: HYPOTHESIS TESTING
• Hypothesis Testing Introduction
• P- Value, Critical Region
• Types of Hypothesis Testing
• Hypothesis Testing Errors : Type I And Type II
• Two Sample Independent T-test
• Two Sample Relation T-test
• One Way Anova Test
• Application of Hypothesis testing
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: PYTHON NUMPY PACKAGE
• Introduction to Numpy Package
• Array as Data Structure
• Core Numpy functions
• Matrix Operations, Broadcasting in Arrays
MODULE 3: PYTHON PANDAS PACKAGE
• Introduction to Pandas package
• Series in Pandas
• Data Frame in Pandas
• File Reading in Pandas
• Data munging with Pandas
MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib
• Visualization Packages (Matplotlib)
• Components Of A Plot, Sub-Plots
• Basic Plots: Line, Bar, Pie, Scatter
MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN
• Seaborn: Basic Plot
• Advanced Python Data Visualizations
MODULE 6: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Modeling and Evaluation in Python
MODULE 7: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Modeling and Evaluation in Python
MODULE 8: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Modeling in Python
MODULE 9: ML ALGO: KNN
• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Modeling and Evaluation in Python
MODULE 1: FEATURE ENGINEERING
• Introduction to Feature Engineering
• Feature Engineering Techniques: Encoding, Scaling, Data Transformation
• Handling Missing values, handling outliers
• Creation of Pipeline
• Use case for feature engineering
MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python
MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)
• Building Blocks Of PCA
• How it works: Finding Principal Components
• Modeling PCA in Python
MODULE 4: ML ALGO: DECISION TREE
• Introduction to Decision Tree & Random Forest
• How it works
• Modeling and Evaluation in Python
MODULE 5: ENSEMBLE TECHNIQUES - BAGGING
• Introduction to Ensemble technique
• Bagging and How it works
• Modeling and Evaluation in Python
MODULE 6: ML ALGO: NAÏVE BAYES
• Introduction to Naive Bayes
• How it works: Bayes' Theorem
• Naive Bayes For Text Classification
• Modeling and Evaluation in Python
MODULE 7: GRADIENT BOOSTING, XGBOOST
• Introduction to Boosting and XGBoost
• How it works?
• Modeling and Evaluation of in Python
MODULE 1: TIME SERIES FORECASTING - ARIMA
• What is Time Series?
• Trend, Seasonality, cyclical and random
• Stationarity of Time Series
• Autoregressive Model (AR)
• Moving Average Model (MA)
• ARIMA Model
• Autocorrelation and AIC
• Time Series Analysis in Python
MODULE 2: SENTIMENT ANALYSIS
• Introduction to Sentiment Analysis
• NLTK Package
• Case study: Sentiment Analysis on Movie Reviews
MODULE 3: REGULAR EXPRESSIONS WITH PYTHON
• Regex Introduction
• Regex codes
• Text extraction with Python Regex
MODULE 4: ML MODEL DEPLOYMENT WITH FLASK
• Introduction to Flask
• URL and App routing
• Flask application – ML Model deployment
MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL
• MS Excel core Functions
• Advanced Functions (VLOOKUP, INDIRECT..)
• Linear Regression with EXCEL
• Data Table
• Goal Seek Analysis
• Pivot Table
• Solving Data Equation with EXCEL
MODULE 6: AWS CLOUD FOR DATA SCIENCE
• Introduction of cloud
• Difference between GCC, Azure, AWS
• AWS Service ( EC2 instance)
MODULE 7: AZURE FOR DATA SCIENCE
• Introduction to AZURE ML studio
• Data Pipeline
• ML modeling with Azure
MODULE 8: INTRODUCTION TO DEEP LEARNING
• Introduction to Artificial Neural Network, Architecture
• Artificial Neural Network in Python
• Introduction to Convolutional Neural Network, Architecture
• Convolutional Neural Network in Python
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• Relational Database Management System
• CRUD operations
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner Join, Outer Join
• Left Join, Right Join
• Self Join, Cross join
• Windows function: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7 : DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
MODULE 1: GIT INTRODUCTION
• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture
MODULE 2: GIT REPOSITORY and GitHub
• Git Repo Introduction
• Create New Repo with Init command
• Git Essentials: Copy & User Setup
• Mastering Git and GitHub
MODULE 3: COMMITS, PULL, FETCH AND PUSH
• Code Commits
• Pull, Fetch and Conflicts resolution
• Pushing to Remote Repo
MODULE 4: TAGGING, BRANCHING AND MERGING
• Organize code with branches
• Checkout branch
• Merge branches
• Editing Commits
• Commit command Amend flag
• Git reset and revert
MODULE 5: GIT WITH GITHUB AND BITBUCKET
• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2 : HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners,
• Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3 : DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
Data Science is a multidisciplinary field that extracts insights and knowledge from structured and unstructured data. It employs scientific methods, processes, algorithms, and systems to analyze and interpret complex data.
Data Science involves collecting, cleaning, and analyzing data to extract valuable insights. Techniques like machine learning and statistical modeling are applied to make predictions and inform decision-making.
Data Science finds applications in various fields such as finance, healthcare, marketing, and more, facilitating data-driven decision-making, predictions, and pattern recognition.
A Data Science pipeline typically includes data collection, cleaning, exploration, feature engineering, modeling, evaluation, and deployment phases.
Big Data refers to large and complex datasets that cannot be processed with traditional methods. Data Science utilizes advanced techniques to extract meaningful insights from Big Data.
In e-commerce, Data Science powers recommendation systems by analyzing user behavior to suggest personalized products, improving customer experience, and boosting sales through targeted recommendations.
Data Science enhances cybersecurity by identifying patterns indicative of cyber threats, predicting potential risks, and implementing proactive measures to secure systems and data.
Data Science revolutionizes industries by optimizing processes, making informed decisions, and predicting trends. In healthcare, it aids in personalized treatments; finance uses it for risk analysis, while retail employs it for inventory optimization and customer insights.
Data Science encompasses a broader scope, involving data analysis, interpretation, and decision-making. Machine Learning is a subset, focusing specifically on creating algorithms that enable systems to learn from data and make predictions or decisions.
Data Science courses are suitable for individuals with a background in mathematics, statistics, computer science, or related fields. Proficiency in programming languages like Python is beneficial.
A compelling data science portfolio should showcase projects, datasets, and the impact of your analyses. Include a mix of coding samples, visualizations, and explanations to demonstrate your skills and problem-solving abilities.
Yes, transitioning from a non-coding background to data science is feasible. Focus on learning programming languages like Python or R, statistics, and machine learning concepts to build a solid foundation.
While a bachelor's degree in computer science, statistics, or a related field is common, some enter the field with degrees in physics, engineering, or economics. Advanced degrees (master's or Ph.D.) can enhance prospects.
Key skills include proficiency in programming languages, statistical analysis, machine learning, data visualization, and domain-specific knowledge. Strong communication and problem-solving skills are also crucial for effective collaboration and decision-making.
Begin by acquiring foundational knowledge in statistics, programming, and machine learning. Engage in real-world projects, build a robust portfolio, and seek internships or entry-level positions to gain practical experience. Networking within the local data science community can open doors to opportunities in Egypt.
The data science job market in Egypt is flourishing in 2024, with a growing demand for skilled professionals. Industries such as finance, healthcare, and e-commerce are actively seeking data scientists to harness insights for strategic decision-making.
The Certified Data Scientist Course stands out as a premier choice for data science training in Egypt, encompassing crucial subjects like machine learning and data analysis.
Data science internships in Egypt are highly valuable as they provide practical experience, exposure to real-world projects, and networking opportunities. Internships enhance skills, making candidates more competitive in the job market.
The typical annual salary for Data Scientists in Egypt averages EGP 291,205, reflecting the compensation received by professionals in this field. This figure provides an insight into the remuneration expectations for individuals pursuing a career in data science within the Egyptian job market.
Yes, freshers can pursue data science courses in Egypt and secure jobs. Entry-level positions may include data analyst or junior data scientist roles. Building a strong portfolio, engaging in internships, and showcasing practical skills will enhance a fresher's employability in the evolving data science job market.
The DataMites Certified Data Scientist Course in Egypt stands out as the world's most popular, comprehensive, and job-oriented program in Data Science and Machine Learning. It undergoes regular updates to align with industry requirements, ensuring it remains current. The course is meticulously fine-tuned to provide a structured learning process, facilitating efficient and focused learning for participants.
Beginner-level data science training options in Egypt for newcomers include the Certified Data Scientist, Data Science in Foundation, and Diploma in Data Science courses.
Absolutely, DataMites in Egypt provides a variety of courses tailored for working professionals looking to enhance their knowledge, including Statistics for Data Science, Data Science with R Programming, Python for Data Science, Data Science Associate, and specialized certifications in Operations, Marketing, HR, and Finance.
The duration of DataMites' data scientist course in Egypt varies between 1 month and 8 months, contingent upon the specific course level.
No prerequisites are necessary for enrolling in the Certified Data Scientist Training in Egypt, making it suitable for beginners and intermediate learners in the field of data science.
The fee structure for DataMites' data science training programs in Egypt ranges from EGP 16,400 to EGP 41,000. This pricing model provides individuals with affordable options to access quality education and enhance their skills in the field of data science.
Expert mentors and faculty members with real-time experience from top companies, including elite institutions like IIMs, conduct DataMites' data science training sessions.
Absolutely, participants must bring a valid photo identification proof, such as a national ID card or driver's license, when collecting their participation certificate or scheduling the certification exam, if necessary.
DataMites provides recorded sessions and supplementary materials for participants who miss a data science training session in Egypt, ensuring they can catch up at their convenience.
Yes, DataMites offers an opportunity for a demo class in Egypt before committing to the data science training fee, allowing participants to experience the course structure and content.
DataMites provides data science courses with internship opportunities in Egypt, allowing participants to gain practical experience and enhance their skills in real-world scenarios.
The "Data Science for Managers" course at DataMites is specifically designed for managers and leaders. Tailored to their needs, it equips them with the essential skills to effectively integrate data science into decision-making processes, fostering informed and strategic choices.
Yes, participants in Egypt have the option to attend help sessions, offering a valuable opportunity for a deeper understanding of specific data science topics, ensuring comprehensive learning and addressing individual queries.
Yes, DataMites in Egypt offers a Data Scientist Course that includes hands-on experience through 10+ capstone projects and a dedicated client/live project. This practical exposure enhances participants' skills, providing real-world application and industry-relevant experience.
Yes, DataMites issues a Data Science Course Completion Certificate. Upon completing the course, participants can request the certificate through the online portal. The certificate verifies their proficiency in data science, enhancing their credibility in the job market.
Flexi-Pass at DataMites allows participants flexibility in attending missed sessions. This feature enables access to recorded sessions and supplementary materials, ensuring a seamless learning experience tailored to individual schedules.
The career mentoring sessions at DataMites follow an interactive format, providing personalized guidance on resume building, interview preparation, and career strategies. These sessions offer valuable insights and strategies to enhance participants' professional journey in the field of data science.
Online Training: DataMites in Egypt offers live online training, providing real-time interaction with instructors, fostering an engaging and interactive learning environment for participants.
Self-Paced Training: Participants have the flexibility to access recorded sessions at their convenience, ensuring a personalized learning pace and accommodating diverse schedules for optimal learning outcomes.
Upon completing DataMites' Data Science Training in Egypt, participants receive the prestigious IABAC Certification. This internationally recognized certification attests to their mastery of data science concepts and practical applications. It serves as a valuable credential, validating their expertise and enhancing their credibility in the field of data science.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.