DATA SCIENCE CERTIFICATION AUTHORITIES

Data Science Course Features

DATA SCIENCE LEAD MENTORS

DATA SCIENCE COURSE FEE IN PORTUGAL

Live Virtual

Instructor Led Live Online

PTE 1,860
PTE 1,479

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Live Online Training
  • 25 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

PTE 1,110
PTE 905

  • Self Learning + Live Mentoring
  • IABAC® & NASSCOM® Certification
  • 1 Year Access To Elearning
  • 25 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Leaner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA SCIENCE ONLINE CLASSES IN PORTUGAL

BEST DATA SCIENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA SCIENCE COURSE

Why DataMites Infographic

SYLLABUS OF DATA SCIENCE COURSE IN PORTUGAL

MODULE 1: DATA SCIENCE ESSENTIALS 

 • Introduction to Data Science
 • Evolution of Data Science
 • Big Data Vs Data Science
 • Data Science Terminologies
 • Data Science vs AI/Machine Learning
 • Data Science vs Analytics

MODULE 2: DATA SCIENCE DEMO

 • Business Requirement: Use Case
 • Data Preparation
 • Machine learning Model building
 • Prediction with ML model
 • Delivering Business Value.

MODULE 3: ANALYTICS CLASSIFICATION 

 • Types of Analytics
 • Descriptive Analytics
 • Diagnostic Analytics
 • Predictive Analytics
 • Prescriptive Analytics
 • EDA and insight gathering demo in Tableau

MODULE 4: DATA SCIENCE AND RELATED FIELDS

 • Introduction to AI
 • Introduction to Computer Vision
 • Introduction to Natural Language Processing
 • Introduction to Reinforcement Learning
 • Introduction to GAN
 • Introduction to Generative Passive Models

MODULE 5: DATA SCIENCE ROLES & WORKFLOW

 • Data Science Project workflow
 • Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
 • Data Science Project stages.

MODULE 6: MACHINE LEARNING INTRODUCTION

 • What Is ML? ML Vs AI
 • ML Workflow, Popular ML Algorithms
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS

 • Data Science in Finance and Banking
 • Data Science in Retail
 • Data Science in Health Care
 • Data Science in Logistics and Supply Chain
 • Data Science in Technology Industry
 • Data Science in Manufacturing
 • Data Science in Agriculture

MODULE 1: PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1: OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2: HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3: EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empirical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4: HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

 

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2:  PYTHON NUMPY  PACKAGE 

 • Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3:  PYTHON PANDAS PACKAGE 

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1: FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4:  ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING 

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7: GRADIENT BOOSTING, XGBOOST

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python 

MODULE 2: SENTIMENT ANALYSIS 

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3: REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4:  ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure, AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8:  INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION 

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

MODULE 2:  SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS 

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL) 

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS 

 • Inner Join, Outer Join
 • Left Join, Right Join
 • Self Join, Cross join
 • Windows function: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES 

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

MODULE 7 : DOCUMENT DB/NO-SQL DB 

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

 • Code Commits
 • Pull, Fetch and Conflicts resolution
 • Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

 • Organize code with branches
 • Checkout branch
 • Merge branches
 • Editing Commits
 • Commit command Amend flag
 • Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET

 • Creating GitHub Account
 • Local and Remote Repo
 • Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

 • Big Data Overview
 • Five Vs of Big Data
 • What is Big Data and Hadoop
 • Introduction to Hadoop
 • Components of Hadoop Ecosystem
 • Big Data Analytics Introduction

MODULE 2 : HDFS AND MAP REDUCE 

 • HDFS – Big Data Storage
 • Distributed Processing with Map Reduce
 • Mapping and reducing stages concepts
 • Key Terms: Output Format, Partitioners,
 • Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

 • PySpark Introduction
 • Spark Configuration
 • Resilient distributed datasets (RDD)
 • Working with RDDs in PySpark
 • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

 • Introducing Spark SQL
 • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2:  POWER-BI BASICS

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES 

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES 

• Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

OFFERED DATA SCIENCE COURSES IN PORTUGAL

DATA SCIENCE COURSE REVIEWS

ABOUT DATA SCIENTIST TRAINING IN PORTUGAL

Marked by its immense potential, globally, the data science platform market, valued at USD 37.9 billion in 2019, is set for substantial growth with a projected Compound Annual Growth Rate (CAGR) of 30.0%. This trend is shaping Portugal's data science industry, contributing to its emergence as a dynamic player in this field.

DataMites stands as a leading institute, offering unmatched training. Our Certified Data Scientist Course in Portugal is crafted for beginners and intermediate learners in the realm of data science. Recognized globally as the world's most popular, comprehensive, and job-oriented data science program, our courses set the benchmark for excellence. Embark on your journey with DataMites and achieve the coveted IABAC Certification, elevating your career in the ever-evolving field of data science.

Comprehensive Training in Three Phases:

Phase 1: Pre Course Self-Study

Initiate your learning journey with high-quality videos designed for an easy learning approach, ensuring a solid foundation for your exploration into data science.

Phase 2: Live Training

Dive into live training sessions featuring a comprehensive syllabus, hands-on projects, and the guidance of expert trainers and mentors. Immerse yourself in a dynamic learning experience.

Phase 3: 4-Month Project Mentoring

Conclude your training with a 4-month project mentoring phase, including a data science internship in Portugal and engagement in 20 capstone projects. Participate in a client/live project, gaining invaluable real-world experience, and receive an experience certificate.

DataMites: Data Science Training in Portugal:

Leadership Excellence with Ashok Veda:

At the helm of DataMites is Ashok Veda, a seasoned professional with over 19 years of experience in data science and analytics. As the Founder & CEO at Rubixe™, he brings unparalleled expertise to our top-tier education, ensuring a transformative learning experience in the realms of data science and AI.

Course Highlights:

Embark on an 8-month journey, investing 700+ learning hours in our comprehensive course curriculum. Attain a globally recognized IABAC® Certification, solidifying your credentials as a data science professional.

Flexible Learning Opportunities:

Experience flexible learning through our online data science courses and self-study options, tailored to accommodate your schedule and learning preferences.

Real-world Projects and Internship Opportunity:

Immerse yourself in real-world projects, including 20 capstone projects and 1 client project, fostering active interaction and hands-on experience. Unlock data science courses with internship in Portugal for practical exposure.

Career Guidance and Job Support:

Benefit from end-to-end job support, including personalized resume building, data science interview preparation, and continuous assistance with job updates and connections.

Exclusive Learning Community:

Join the DataMites exclusive learning community, facilitating collaboration and shared knowledge among peers.

Affordable Pricing and Scholarships:

Access quality education at affordable pricing, with data science course fees in Portugal ranging from EUR 483 to EUR 1210. Explore scholarship opportunities to further support your educational journey.

Portugal's data science landscape is burgeoning with innovation and growth, contributing significantly to the global scenario. As the industry expands, Portugal stands as a key player, fostering a dynamic environment for professionals in the field.

Professionals in the data science sector in Portugal command highly competitive salaries, reflecting the industry's recognition of their specialized skills. According to Salary Explorer, the average salary for a Data Scientist in Portugal is an impressive 51,300 EUR. This robust remuneration underscores the industry's acknowledgment of the pivotal role data scientists play in extracting actionable insights from vast datasets. With Portugal's strategic focus on technology and innovation, data scientists are highly sought-after, making the profession one of the most lucrative and rewarding in the country, attracting top-tier talent seeking a rewarding career path.

DataMites, as a beacon of excellence, not only pioneers in data science but also offers a diverse array of courses in artificial intelligence, data engineering, data analytics, machine learning, Python, tableau, and more. Choose DataMites as your gateway to a successful career, where our expert-led courses, under the guidance of industry stalwart Ashok Veda, empower you with the skills needed to thrive in the evolving landscape of data science. With our commitment to quality education, extensive course offerings, and unwavering support, DataMites is the catalyst for your career success in Portugal.

ABOUT DATAMITES DATA SCIENCE COURSE IN PORTUGAL

To embark on a Data Science career in Portugal, individuals should pursue relevant education in mathematics or computer science, gain proficiency in languages like Python or R, engage in real-world projects, and consider obtaining certifications. Networking with professionals and seeking internships can expedite career entry.

In Portugal, Data Scientists can anticipate an impressive average salary of 51,300 EUR, as reported by Salary Explorer. This figure reflects the competitive compensation offered in recognition of the valuable skills and expertise these professionals bring to the field of Data Science.

Widely utilized in Data Science, Python, R, and SQL stand out. Python's versatility and extensive libraries make it a preferred choice for data manipulation, analysis, and machine learning tasks.

Data Science finds applications across various industries, contributing to decision-making through predictive analytics, pattern recognition, and trend analysis. Its pivotal role extends to finance, healthcare, marketing, and technology.

Critical skills for effective Data Scientists encompass mastery in programming languages, statistical analysis, machine learning, data wrangling, and effective communication. These capabilities empower individuals to extract valuable insights and contribute to strategic decision-making processes.

While not mandatory, possessing a high proficiency in Python is immensely advantageous for entering the Data Science field. Python's versatility, readability, and extensive libraries make it a valuable tool for tasks like data manipulation, analysis, and machine learning.

Data Science involves extracting insights from data through statistical analysis, machine learning, and domain expertise. It embraces a multidisciplinary approach to analyze and interpret complex information, supporting decision-making across various sectors.

A prosperous career in Data Science benefits from a foundation in mathematics, statistics, computer science, or related fields. While advanced degrees enhance competitiveness, practical experience, continuous learning, and staying abreast of emerging technologies are equally crucial.

In Portugal, a Data Scientist typically commences as an entry-level analyst, progresses to roles like Data Engineer or Machine Learning Engineer, and with experience, may attain positions such as Lead Data Scientist or Chief Data Officer. This trajectory involves ongoing learning, skill development, and strategic contributions to organizations' data-driven initiatives.

The Certified Data Scientist Course holds a prominent position in Portugal. With comprehensive coverage of Python, machine learning, and data analysis, it ensures a well-rounded understanding of Data Science. Recognized by the industry and emphasizing practical skills, it is a top choice for those aiming to excel in Portugal's data-driven landscape.

Data Science internships in Portugal significantly enhance professional growth by providing hands-on experience, exposure to real-world projects, and networking opportunities. They contribute to the development of practical skills, industry insights, and overall employability.

Certification courses in Data Science are accessible to individuals with backgrounds in math, statistics, computer science, or related fields. Basic programming knowledge and familiarity with statistics may be prerequisites for certain courses.

The typical data science project lifecycle involves defining objectives, collecting and preprocessing data, conducting exploratory data analysis, developing models, validation, deployment, and continuous monitoring. This iterative process underscores collaboration, adaptability, and delivering actionable insights.

In Portugal, Data Science plays a crucial role in cybersecurity by utilizing machine learning algorithms for threat detection, anomaly analysis, and pattern recognition. It strengthens defense mechanisms, predicts cyber threats, and ensures the overall security of digital infrastructure.

In the financial sector, Data Science is instrumental in risk assessment, fraud detection, and predicting market trends. It contributes to decision-making by providing insights into investment strategies, optimizing resource allocation, and ensuring overall financial stability.

Data Science plays a pivotal role in decision-making across industries by extracting insights from data. Through predictive analytics and pattern recognition, it facilitates informed and strategic choices, optimizing processes and fostering innovation.

Data Science elevates business intelligence by offering advanced analytics that go beyond descriptive reporting. Incorporating predictive and prescriptive analytics, it provides a forward-looking perspective, empowering businesses to make data-driven decisions for sustained growth.

In e-commerce, Data Science revolutionizes recommendation systems by analyzing user behavior and preferences. Machine learning algorithms predict and personalize recommendations, enhancing user experience, increasing engagement, and ultimately driving sales.

Data Science projects often encounter challenges like data quality issues and complex model interpretability. Robust preprocessing, collaboration with domain experts, and the utilization of explainable AI techniques are strategies to address these challenges and ensure project success.

A Data Scientist in business is responsible for collecting, cleaning, and analyzing data to extract valuable insights. They develop and implement machine learning models, interpret results, and communicate findings to stakeholders. Collaborating with teams, refining algorithms, and staying abreast of industry trends are integral aspects of their roles, contributing to informed decision-making.

View more

FAQ’S OF DATA SCIENCE TRAINING IN PORTUGAL

Explore a range of Data Science Certifications in Portugal by DataMites, including Certified Data Scientist, Data Science for Managers, Data Science Associate, Diploma in Data Science, Statistics for Data Science, and Python for Data Science. Each certification is tailored to meet specific industry needs, ensuring a comprehensive education in Data Science.

DataMites' Data Science Training in Portugal includes an internship with AI companies, offering participants valuable practical exposure. This hands-on experience complements theoretical learning, ensuring a comprehensive understanding of data science concepts.

DataMites caters to Portugalian professionals with specialized Data Science courses, including Statistics for Data Science, Data Science with R Programming, Python for Data Science, Certified Data Scientist Operations, and Certified Data Scientist Marketing. These programs enhance professionals' skills in the dynamic field of Data Science.

The duration of DataMites' Data Scientist Courses in Portugal is flexible, ranging from 1 to 8 months. This customization allows participants to choose a timeframe that aligns with their learning preferences and availability.

The Certified Data Scientist Training in Portugal is open to all with no prerequisites. Tailored for beginners and intermediate learners in Data Science, the course provides an inclusive learning opportunity, accommodating individuals from diverse backgrounds to build foundational skills.

The fee structure for DataMites' data science training in Portugal varies from EUR 483 to EUR 1210. This flexible pricing caters to different budget constraints, ensuring accessibility to comprehensive and quality data science training programs in Portugal. Participants can choose an option that suits their financial preferences and learning needs.

Trainers at DataMites undergo a rigorous selection process, ensuring they are elite mentors and faculty members with real-world experience from leading companies and prestigious institutes like IIMs. This careful selection guarantees participants receive training from seasoned professionals, enriching their data science learning journey.

Opting for DataMites' online data science training in Portugal offers the flexibility to learn from any location, overcoming geographical constraints. The interactive online platform fosters engagement through discussions, forums, and collaborative activities, enhancing the overall Data Science training experience.

To facilitate the issuance of participation certificates and scheduling certification exams, participants attending data science training sessions must bring a valid photo identification proof, such as a national ID card or driver's license.

DataMites offers a comprehensive demo class option in Portugal, allowing participants to explore the course before committing to the data science training fee. This enables individuals to assess the course structure and teaching methodology.

DataMites' Certified Data Scientist Course in Portugal is globally recognized as a comprehensive, job-oriented program in Data Science and Machine Learning. Regular updates ensure its alignment with industry standards, and its structured learning approach ensures efficient knowledge absorption.

Participants who miss a data science training session in Portugal have catch-up opportunities through make-up sessions. This provision ensures that learners can stay on track with the course curriculum.

DataMites' "Data Science for Managers" course empowers leaders to integrate data science into decision-making processes. Tailored for managers, this course equips them with the insights and tools needed to lead data-driven initiatives and make informed strategic decisions within their organizations.

For those new to Data Science in Portugal, DataMites offers foundational training through courses like Certified Data Scientist, Data Science in Foundation, and Diploma in Data Science. These beginner-level programs provide a thorough introduction to core principles and applications in Data Science.

DataMites formally acknowledges participants' completion of the Data Science Training in Portugal by issuing a certificate. This document serves as proof of their acquired skills.

DataMites facilitates deeper knowledge acquisition with help sessions for participants in Portugal, offering additional support for a better understanding of specific data science topics.

The Data Science Flexi-Pass at DataMites offers an adaptable training schedule, allowing participants to learn at their own pace. This flexibility caters to diverse schedules and learning preferences.

DataMites in Portugal provides tailored learning experiences through online data science training in Portugal and self-paced training for Data Science courses. Participants can choose the mode that aligns with their learning preferences, ensuring a personalized and effective training journey.

Completing DataMites' Data Science Training in Portugal earns participants an IABAC Certification. This esteemed certification, granted by the International Association of Business Analytics Certifications (IABAC), validates the proficiency gained in data science, strengthening participants' standing in the industry.

Career mentoring sessions within DataMites' data science training in Portugal are tailored to provide personalized guidance, industry perspectives, and strategic career planning. This format ensures individualized support for participants' professional growth.

DataMites' Data Scientist Course in Portugal provides practical exposure through live projects. With over 10 capstone projects and involvement in one client or live project, participants gain hands-on experience, enhancing their skills in real-world data science applications.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

DATA SCIENCE COURSE PROJECTS

DATA SCIENCE JOB INTERVIEW QUESTIONS

OTHER DATA SCIENCE TRAINING CITIES IN PORTUGAL

Global DATA SCIENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog