DATA SCIENCE CERTIFICATION AUTHORITIES

Data Science Course Features

DATA SCIENCE LEAD MENTORS

DATA SCIENCE COURSE FEE IN ITALY

Live Virtual

Instructor Led Live Online

Euro 1,850
Euro 1,479

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Live Online Training
  • 25 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

Euro 1,110
Euro 905

  • Self Learning + Live Mentoring
  • IABAC® & NASSCOM® Certification
  • 1 Year Access To Elearning
  • 25 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Leaner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA SCIENCE ONLINE CLASSES IN ITALY

BEST DATA SCIENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA SCIENCE COURSE

Why DataMites Infographic

SYLLABUS OF DATA SCIENCE COURSE IN ITALY

MODULE 1: DATA SCIENCE ESSENTIALS 

 • Introduction to Data Science
 • Evolution of Data Science
 • Big Data Vs Data Science
 • Data Science Terminologies
 • Data Science vs AI/Machine Learning
 • Data Science vs Analytics

MODULE 2: DATA SCIENCE DEMO

 • Business Requirement: Use Case
 • Data Preparation
 • Machine learning Model building
 • Prediction with ML model
 • Delivering Business Value.

MODULE 3: ANALYTICS CLASSIFICATION 

 • Types of Analytics
 • Descriptive Analytics
 • Diagnostic Analytics
 • Predictive Analytics
 • Prescriptive Analytics
 • EDA and insight gathering demo in Tableau

MODULE 4: DATA SCIENCE AND RELATED FIELDS

 • Introduction to AI
 • Introduction to Computer Vision
 • Introduction to Natural Language Processing
 • Introduction to Reinforcement Learning
 • Introduction to GAN
 • Introduction to Generative Passive Models

MODULE 5: DATA SCIENCE ROLES & WORKFLOW

 • Data Science Project workflow
 • Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
 • Data Science Project stages.

MODULE 6: MACHINE LEARNING INTRODUCTION

 • What Is ML? ML Vs AI
 • ML Workflow, Popular ML Algorithms
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS

 • Data Science in Finance and Banking
 • Data Science in Retail
 • Data Science in Health Care
 • Data Science in Logistics and Supply Chain
 • Data Science in Technology Industry
 • Data Science in Manufacturing
 • Data Science in Agriculture

MODULE 1: PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1: OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2: HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3: EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empirical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4: HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

 

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2:  PYTHON NUMPY  PACKAGE 

 • Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3:  PYTHON PANDAS PACKAGE 

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1: FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4:  ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING 

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7: GRADIENT BOOSTING, XGBOOST

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python 

MODULE 2: SENTIMENT ANALYSIS 

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3: REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4:  ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure, AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8:  INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION 

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

MODULE 2:  SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS 

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL) 

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS 

 • Inner Join, Outer Join
 • Left Join, Right Join
 • Self Join, Cross join
 • Windows function: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES 

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

MODULE 7 : DOCUMENT DB/NO-SQL DB 

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

 • Code Commits
 • Pull, Fetch and Conflicts resolution
 • Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

 • Organize code with branches
 • Checkout branch
 • Merge branches
 • Editing Commits
 • Commit command Amend flag
 • Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET

 • Creating GitHub Account
 • Local and Remote Repo
 • Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

 • Big Data Overview
 • Five Vs of Big Data
 • What is Big Data and Hadoop
 • Introduction to Hadoop
 • Components of Hadoop Ecosystem
 • Big Data Analytics Introduction

MODULE 2 : HDFS AND MAP REDUCE 

 • HDFS – Big Data Storage
 • Distributed Processing with Map Reduce
 • Mapping and reducing stages concepts
 • Key Terms: Output Format, Partitioners,
 • Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

 • PySpark Introduction
 • Spark Configuration
 • Resilient distributed datasets (RDD)
 • Working with RDDs in PySpark
 • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

 • Introducing Spark SQL
 • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2:  POWER-BI BASICS

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES 

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES 

• Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

OFFERED DATA SCIENCE COURSES IN ITALY

DATA SCIENCE COURSE REVIEWS

ABOUT DATA SCIENTIST TRAINING IN ITALY

Data Science course in Italy provides data-driven decision-making where you can immerse yourself in cutting-edge analytics, machine learning, and statistical techniques, fostering a dynamic skill set for thriving in the digital age. Based on findings from Data Bridge Market Research, the data science market, valued at USD 122.94 billion in 2022, is forecasted to witness substantial growth, reaching USD 942.76 billion by 2030. With an expected impressive Compound Annual Growth Rate (CAGR) of 29.00%, this market is set for substantial expansion over the projected period. Italy stands out as a notable participant in the global transformation, offering an environment conducive to individuals keen on delving into the dynamic realm of data science.

DataMites has positioned itself as a leading institution in data science education, presenting a meticulously crafted Certified Data Scientist Course in Italy tailored for both novices and intermediate learners. Recognized as a globally acclaimed, comprehensive, and career-oriented program, our courses are intricately designed to instil the essential skills demanded by the industry.

Proudly affiliated with IABAC, DataMites provides globally recognized certifications that augment the value of our training programs. Aspiring residents in Italy seeking to venture into the realm of data science prefer DataMites as their institution of choice for acquiring expertise and ensuring a successful career in the field.

The data science training in Italy follows a three-phase learning methodology:

In the initial phase, participants must undertake a self-paced pre-course study using high-quality videos and a user-friendly learning approach.

The second phase includes interactive training sessions covering a comprehensive syllabus, practical projects, and personalized guidance from experienced trainers.

During the third phase, participants undergo a 4-month project mentoring period, engage in an internship, complete 20 capstone projects, contribute to a client/live project, and ultimately receive an experience certificate.

DataMites provides comprehensive data science training in Italy, offering a diverse array of inclusive programs.

Lead Mentorship by Ashok Veda: Guided by Ashok Veda, a distinguished data scientist, DataMites leads the way in mentorship, offering students top-notch education from industry experts.

Comprehensive Course Structure: Our program features a comprehensive course structure spanning 700 learning hours across 8 months, providing an in-depth exploration of data science and equipping students with extensive knowledge.

Global Certifications: DataMites proudly provides globally recognized certifications from IABAC®, validating the excellence and relevance of our courses.

Practical Projects: Immerse yourself in 25 Capstone projects and 1 Client Project using real-world data, offering a unique opportunity to apply theoretical knowledge in practical scenarios.

Flexible learning options: Tailor your educational experience with flexible learning options, including online data science courses and self-paced modules, empowering you to progress through the curriculum at your preferred speed.

Focus on Real-World Data: With a focus on real-world data, DataMites emphasizes hands-on learning through projects, ensuring students gain valuable practical experience alongside theoretical knowledge.

Exclusive DataMites Learning Community: Join the exclusive DataMites Learning Community, a dynamic platform fostering collaboration, knowledge exchange, and networking among passionate data science enthusiasts.

Internship Opportunities: DataMites provides data science courses with internship opportunities in Italy, enabling students to gain real-world experience and enhance their skills.

Italy, known for its rich cultural heritage and historic landmarks, boasts a diverse economy driven by sectors such as manufacturing, fashion, and tourism, making it a captivating destination for both business and leisure travellers. With its iconic cities, picturesque landscapes, and renowned cuisine, Italy continues to be a global hub for tourism, contributing significantly to its vibrant and resilient economy.

The data science career in Italy is burgeoning, offering ample opportunities for professionals to thrive in sectors like finance, healthcare, and technology. As industries increasingly harness data-driven insights, a career in data science in Italy presents a promising and evolving path for those seeking impactful roles in the digital era. Additionally, the salary of a data scientist in Italy ranges from EUR 31,034 per year according to the PayScale report.

DataMites provides an array of courses, encompassing Artificial Intelligence, Tableau, Data Analytics, Machine Learning, Data Engineering, python, and more. Guided by industry experts, our comprehensive programs assure the acquisition of essential skills crucial for a successful career. Enrol at DataMites, the premier institute for holistic data science courses in Italy, and cultivate profound expertise in the field.

ABOUT DATAMITES DATA SCIENCE COURSE IN ITALY

Data Science is a multidisciplinary field focused on extracting insights and knowledge from data. It operates by utilizing statistical methods, machine learning algorithms, and analytical techniques to analyze, interpret, and draw meaningful conclusions from complex datasets.

The Data Science process involves data collection, cleaning, analysis, and interpretation. Its practical implications include informed decision-making, trend predictions, pattern recognition, and the optimization of processes across various industries.

Real-world applications of Data Science span healthcare, finance, marketing, and more. A Data Science pipeline comprises data collection, cleaning, exploration, feature engineering, modeling, evaluation, and deployment.

Big Data, characterized by vast and complex datasets, is intrinsically linked to Data Science. Data Science techniques and tools are essential for processing, analyzing, and deriving meaningful insights from Big Data.

Data Science in e-commerce enhances customer experiences through recommendation systems. It analyzes user behaviour, preferences, and purchase history to provide personalized product recommendations, thereby boosting engagement and sales.

 Data Science strengthens cybersecurity by identifying patterns indicative of cyber threats, predicting risks, and implementing proactive measures. It aids in anomaly detection, threat intelligence, and the development of robust security protocols.

Data Science finds applications in diverse industries, from healthcare for personalized treatments to finance for risk analysis. It optimizes processes, informs decision-making, and addresses industry-specific challenges, showcasing its adaptability and impact across various sectors.

Data Science encompasses a broader scope, involving data collection, analysis, and interpretation. Machine learning is a subset of Data Science, focusing specifically on developing algorithms that enable systems to learn patterns and make predictions from data.

 Individuals with backgrounds in mathematics, statistics, computer science, or related fields qualify for Data Science certification courses. Proficiency in programming languages like Python is beneficial.

Crafting a data science portfolio involves selecting diverse projects, showcasing coding skills, incorporating visualizations, and providing detailed explanations of methodologies and outcomes.

Yes, transitioning from a non-coding background to Data Science is possible. Learning programming languages, statistics, and machine learning are crucial to building a solid foundation.

While a bachelor's degree in computer science, statistics, or related fields is common, some enter with degrees in physics, engineering, or economics. Advanced degrees (master's or Ph.D.) enhance prospects.

Essential skills for a Data Scientist include proficiency in programming languages, statistical analysis, machine learning, data visualization, and strong communication and problem-solving abilities.

Emerging trends in Data Science include the rise of automated machine learning, increased focus on ethical considerations, and the integration of artificial intelligence in data analysis and decision-making processes. Continual learning and adaptation to new tools and technologies are also crucial in this evolving field.

Kickstarting a data science career in Italy involves acquiring foundational knowledge in statistics, programming, and machine learning. Engaging in practical projects, building a strong portfolio, and networking within the local data science community are essential steps. Exploring online courses and seeking mentorship can provide additional support.

As of 2024, the data science job market in Italy is promising, with increasing demand for skilled professionals. Industries like finance, healthcare, and telecommunications are actively seeking data scientists to leverage insights for strategic decision-making.

For top-notch data science education in Italy, the Certified Data Scientist Course is a standout option, providing expertise in machine learning and data analysis.

Data science internships in Italy are highly valuable as they provide practical experience, exposure to real-world projects, and opportunities to network. Internships enhance skills and increase employability in the competitive job market.

The data scientist's salary in Italy ranges from EUR 31,034 based on Glassdoor data. This figure provides valuable insights into the earning potential for Data Scientists in Italy, reflecting the competitive compensation offered in the local job market.

Yes, newcomers can undertake data science courses in Italy and secure jobs. Entry-level positions such as data analyst or junior data scientist roles are accessible with the right skills, portfolio, and determination. Engaging in local meetups and networking events can also enhance job prospects.

View more

FAQ’S OF DATA SCIENCE TRAINING IN ITALY

The Datamites™ Certified Data Scientist course in Italy encompasses essential elements of data science, covering programming, statistics, machine learning, and business knowledge. It prioritizes Python as the main language, with the inclusion of R. Successfully finishing the course results in the attainment of an IABAC™ certificate.

  • Statistics for Data Science
  • Diploma in Data Science
  • Certified Data Scientist
  • Data Science for Managers
  • Data Science Associate
  • Python for Data Science
  • Data Science in Foundation
  • Data Science in Marketing
  • Data Science in Operations
  • Data Science in Finance
  • Data Science in HR
  • Data Science with R

For individuals new to the field in Italy, accessible training options include the Certified Data Scientist, Data Science in Foundation, and Diploma in Data Science courses.

Certainly, DataMites in Italy offers specialized courses for working professionals seeking knowledge augmentation. These include Statistics for Data Science, Data Science with R Programming, Python for Data Science, Data Science Associate, and certifications in Operations, Marketing, HR, and Finance.

DataMites offers data scientist courses in Italy with durations ranging from 1 to 8 months, depending on the course level.

No prior requirements are needed for the Certified Data Scientist Training in Italy, making it suitable for both beginners and intermediate learners in the field of data science.

DataMites' online training provides flexibility, self-paced learning, and accessibility to a comprehensive curriculum aligned with industry needs. Learners receive expert guidance from seasoned instructors, breaking geographical barriers for a rich learning experience.

Certainly, the DataMites' data science training fee in Italy ranges from  EUR 490 to EUR 1,226  offering competitive pricing for quality education in data science.

Trainers at DataMites are accomplished mentors and faculty members selected based on certifications and real-world experience from prominent companies and prestigious institutes.

Participants in Italy must bring a valid photo ID proof, such as a national ID card or driver's license, to collect their participation certificate and schedule the certification exam if needed.

In case of a missed session, participants in Italy can access recorded sessions and supplementary materials to catch up on content at their own pace.

Yes, DataMites provides an opportunity for a demo class in Italy, allowing participants to experience the structure and content of the data science training before committing to the fee.

Yes, DataMites offers data science courses with internship opportunities in Italy, providing hands-on experience and practical exposure to real-world scenarios.

Specifically curated for managers, the "Data Science for Managers" course at DataMites equips leaders with essential skills for the seamless integration of data science into decision-making processes.

Yes, participants in Italy have the option to attend help sessions, providing additional support for a better grasp of specific data science topics.

Yes, participants undertaking DataMites' Data Scientist Course in Italy and get engage in 10+ capstone projects and a live client project, enhancing their practical skills in real-world applications.

Yes, DataMites issues a Data Science Course Completion Certificate upon successfully finishing the program. Participants need to attend the training, complete assignments, and pass assessments to obtain the certificate.

The Flexi-Pass at DataMites provides flexibility for participants in Italy to attend missed sessions, access recorded sessions, and catch up at their convenience for a personalized learning experience.

DataMites' career mentoring sessions in Italy guide participants through resume building, interview preparation, and personalized career advice, enhancing their professional journey in the field of data science.

DataMites in Italy offers flexible training methods, including live online sessions and self-paced learning through recorded sessions, accommodating diverse participant preferences.

Upon completion, participants receive the prestigious IABAC Certification from DataMites, globally recognised for validating their mastery of data science concepts and practical applications.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

DATA SCIENCE COURSE PROJECTS

DATA SCIENCE JOB INTERVIEW QUESTIONS

OTHER DATA SCIENCE TRAINING CITIES IN ITALY

Global DATA SCIENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog