DATA SCIENCE CERTIFICATION AUTHORITIES

Data Science Course Features

DATA SCIENCE LEAD MENTORS

DATA SCIENCE COURSE FEE IN GUADALAJARA, MEXICO

Live Virtual

Instructor Led Live Online

27,330
17,547

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Live Online Training
  • 25 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

16,400
10,669

  • Self Learning + Live Mentoring
  • IABAC® & NASSCOM® Certification
  • 1 Year Access To Elearning
  • 25 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Leaner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA SCIENCE ONLINE CLASSES IN GUADALAJARA

BEST DATA SCIENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA SCIENCE COURSE

Why DataMites Infographic

SYLLABUS OF DATA SCIENCE COURSE IN GUADALAJARA

MODULE 1: DATA SCIENCE ESSENTIALS 

 • Introduction to Data Science
 • Evolution of Data Science
 • Big Data Vs Data Science
 • Data Science Terminologies
 • Data Science vs AI/Machine Learning
 • Data Science vs Analytics

MODULE 2: DATA SCIENCE DEMO

 • Business Requirement: Use Case
 • Data Preparation
 • Machine learning Model building
 • Prediction with ML model
 • Delivering Business Value.

MODULE 3: ANALYTICS CLASSIFICATION 

 • Types of Analytics
 • Descriptive Analytics
 • Diagnostic Analytics
 • Predictive Analytics
 • Prescriptive Analytics
 • EDA and insight gathering demo in Tableau

MODULE 4: DATA SCIENCE AND RELATED FIELDS

 • Introduction to AI
 • Introduction to Computer Vision
 • Introduction to Natural Language Processing
 • Introduction to Reinforcement Learning
 • Introduction to GAN
 • Introduction to Generative Passive Models

MODULE 5: DATA SCIENCE ROLES & WORKFLOW

 • Data Science Project workflow
 • Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
 • Data Science Project stages.

MODULE 6: MACHINE LEARNING INTRODUCTION

 • What Is ML? ML Vs AI
 • ML Workflow, Popular ML Algorithms
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS

 • Data Science in Finance and Banking
 • Data Science in Retail
 • Data Science in Health Care
 • Data Science in Logistics and Supply Chain
 • Data Science in Technology Industry
 • Data Science in Manufacturing
 • Data Science in Agriculture

MODULE 1: PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1: OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2: HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3: EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empirical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4: HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

 

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2:  PYTHON NUMPY  PACKAGE 

 • Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3:  PYTHON PANDAS PACKAGE 

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1: FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4:  ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING 

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7: GRADIENT BOOSTING, XGBOOST

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python 

MODULE 2: SENTIMENT ANALYSIS 

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3: REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4:  ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure, AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8:  INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION 

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

MODULE 2:  SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS 

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL) 

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS 

 • Inner Join, Outer Join
 • Left Join, Right Join
 • Self Join, Cross join
 • Windows function: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES 

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

MODULE 7 : DOCUMENT DB/NO-SQL DB 

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

 • Code Commits
 • Pull, Fetch and Conflicts resolution
 • Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

 • Organize code with branches
 • Checkout branch
 • Merge branches
 • Editing Commits
 • Commit command Amend flag
 • Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET

 • Creating GitHub Account
 • Local and Remote Repo
 • Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

 • Big Data Overview
 • Five Vs of Big Data
 • What is Big Data and Hadoop
 • Introduction to Hadoop
 • Components of Hadoop Ecosystem
 • Big Data Analytics Introduction

MODULE 2 : HDFS AND MAP REDUCE 

 • HDFS – Big Data Storage
 • Distributed Processing with Map Reduce
 • Mapping and reducing stages concepts
 • Key Terms: Output Format, Partitioners,
 • Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

 • PySpark Introduction
 • Spark Configuration
 • Resilient distributed datasets (RDD)
 • Working with RDDs in PySpark
 • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

 • Introducing Spark SQL
 • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2:  POWER-BI BASICS

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES 

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES 

• Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

OFFERED DATA SCIENCE COURSES IN GUADALAJARA

DATA SCIENCE COURSE REVIEWS

ABOUT DATA SCIENTIST TRAINING IN GUADALAJARA

The Data Science course in Guadalajara unveils a myriad of possibilities, empowering individuals to leverage data-driven insights for innovation, effective decision-making, and tackling intricate challenges across diverse industries. As per a report from Precedence Research, the global market for data science platforms reached a valuation of USD 112.12 billion in 2022. Forecasts indicate that by 2032, this market is expected to grow significantly, reaching an estimated value of around USD 501.03 billion. This upward trend implies a projected compound annual growth rate (CAGR) of 16.2% from 2023 to 2032. Explore the nuances of the data science industry in Guadalajara, unveiling distinctive challenges and opportunities within this dynamic and evolving environment.

DataMites distinguishes itself as a prominent global institution committed to delivering high-quality data science training. Tailored for beginners and intermediates, our Certified Data Scientist Course in Guadalajara includes a globally recognized curriculum encompassing both data science and machine learning. This guarantees a transformative learning journey, equipping participants with crucial skills to thrive in the constantly evolving field of data science. Additionally, our programs integrate IABAC certification, providing a valuable credential to enhance your professional stature.

The data science training in Guadalajara adopts a three-phase learning model:

In the initial phase, participants engage in self-directed pre-course study using high-quality videos and a user-friendly learning approach.

The second phase comprises interactive training sessions that encompass a comprehensive syllabus, practical projects, and personalized guidance from experienced trainers.

For the third phase, participants undergo a 4-month project mentoring period, participate in an internship, complete 20 capstone projects, actively contribute to a client or live project, and ultimately obtain an experience certificate.

DataMites delivers comprehensive and diverse data science training in Guadalajara, distinguished by key features:

Guidance from Ashok Veda: Led by the expertise of acclaimed data scientist Ashok Veda, DataMites provides exceptional mentorship to ensure students receive top-notch education.

Extensive Course Structure: The program features a thorough curriculum spanning 700 learning hours over 8 months, providing a deep understanding of data science and empowering students with extensive knowledge.

Global Certifications: DataMites proudly offers globally recognized certifications from IABAC®, validating the excellence and relevance of the courses.

Hands-On Projects: Engage in 25 Capstone projects and 1 Client Project using real-world data, providing a unique opportunity to apply theoretical knowledge in practical scenarios.

Flexible Learning: Tailor your learning experience with a flexible mix of online Data Science courses and self-study, accommodating various schedules.

Real-World Data Focus: Emphasizing hands-on learning with real-world data projects, DataMites ensures students gain valuable practical experience alongside theoretical knowledge.

Exclusive Learning Community: Join the exclusive DataMites Learning Community, a dynamic platform fostering collaboration, knowledge exchange, and networking among passionate data science enthusiasts.

Internship Opportunities: DataMites offers data science courses with internship opportunities in Guadalajara, allowing students to gain real-world experience and enhance their skills.

Guadalajara, known as the "Pearl of the West," boasts vibrant culture, historic architecture, and delicious cuisine, making it a captivating destination in Mexico. Additionally, Guadalajara has emerged as a hub for the IT sector in Latin America, with a growing tech ecosystem fueled by innovation and entrepreneurship, attracting talent and investment from around the globe.

In Guadalajara, the data science career landscape is burgeoning with promising opportunities, as the demand for skilled professionals continues to rise. The city's growing emphasis on technological advancements and data-driven decision-making underscores the expansive scope for individuals pursuing a career in data science. Furthermore, the salary of a data scientist in Guadalajara ranges from MXN 82,856  per year according to a Glassdoor report.

Embark on a diverse learning experience covering Artificial Intelligence,Tableau, Data Analytics, Machine Learning, Data Engineering, python, and beyond at DataMites. Guided by industry experts, our comprehensive programs ensure the acquisition of crucial skills necessary for a successful career. Enroll at DataMites, the leading institute offering comprehensive data science courses in Guadalajara, and cultivate a profound understanding of the field under expert mentorship.

ABOUT DATAMITES DATA SCIENCE COURSE IN GUADALAJARA

Data Science is the specialized discipline dedicated to extracting valuable insights and knowledge from data, employing sophisticated methods such as statistics, machine learning, and data analysis.

Data Science functions by systematically gathering, processing, and analyzing extensive datasets to unveil meaningful patterns, enabling well-informed decision-making across diverse industries.

Data Science is practically applied in predictive modeling, machine learning, and data-driven decision-making across sectors like healthcare, finance, marketing, and more.

Critical components of a Data Science pipeline encompass data collection, preprocessing, exploratory data analysis, feature engineering, model training, evaluation, and deployment.

Big Data is intricately connected to Data Science, involving the handling of large and complex datasets that demand specialized tools and techniques for thorough analysis.

Data Science finds extensive applications across various industries, including healthcare for predictive analytics, finance for risk assessment, and e-commerce for personalized recommendations.

A career in Data Science often demands an educational background in computer science, statistics, or related fields, coupled with proficiency in programming and data manipulation.

Essential skills for a Data Scientist include proficiency in programming, statistical analysis, machine learning, and effective communication.

Building a robust Data Science portfolio involves showcasing projects that demonstrate practical application of skills, effective problem-solving, and innovative thinking.

Industries actively seeking Data Scientists include technology, finance, healthcare, and e-commerce.

Emerging trends in Data Science encompass explainable AI, automated machine learning, and the integration of data ethics.

The data science job market in Guadalajara in 2024 is shaped by industry demand and technological advancements.

Acknowledged as a premier option for data science training in Guadalajara, the Certified Data Scientist Course covers pivotal topics such as machine learning and data analysis.

Data science internships in Guadalajara offer substantial benefits by providing practical experience and valuable networking opportunities.

Newcomers can feasibly pursue a data science course and secure employment in Guadalajara by cultivating a robust skill set and incorporating relevant projects into their portfolio.

Businesses in Guadalajara leverage data science for growth by employing analytics to gain customer insights, optimize processes, and make strategic decisions.

In finance, data science applications encompass fraud detection, risk assessment, and algorithmic trading.

Data science contributes to e-commerce by powering recommendation systems, personalizing user experiences, and optimizing supply chain management.

In cybersecurity, data science plays a pivotal role in detecting anomalies, identifying potential threats, and enhancing overall security measures.

In manufacturing and supply chain management, data science is applied for demand forecasting, inventory optimization, and improving process efficiency.

The salary of a data scientist in Guadalajara ranges from MXN 86,358 per year according to a Glassdoor report.

View more

FAQ’S OF DATA SCIENCE TRAINING IN GUADALAJARA

The Datamites™ Certified Data Scientist course provides an extensive curriculum, covering fundamental aspects of data science, including programming, statistics, machine learning, and business knowledge. It places a strong emphasis on Python as the primary language, with optional inclusion of R. Successful completion results in the prestigious IABAC™ certificate.

While beneficial, a statistical background is not mandatory for a data science career in Guadalajara. Proficiency in relevant tools, programming languages, and practical problem-solving skills are often prioritized.

DataMites in Guadalajara offers diverse data science certifications, including Diploma in Data Science, Certified Data Scientist, Data Science for Managers, Data Science Associate, Statistics for Data Science, Python for Data Science, and specialized certifications in Marketing, Operations, Finance, and HR.

Beginners in Guadalajara can explore foundational training options such as Certified Data Scientist, Data Science Foundation, and Diploma in Data Science for an introduction to key data science concepts.

Certainly, DataMites in Guadalajara provides courses tailored for professionals, including Statistics for Data Science, Data Science with R Programming, Python for Data Science, Data Science Associate, and specialized certifications in Operations, Marketing, HR, and Finance.

The data science course in Guadalajara offered by DataMites has a duration of 8 months.

Career mentoring sessions at DataMites are interactive, offering personalized guidance on resume building, interview preparation, and career strategies to enrich participants' professional journeys in data science.

Upon completing DataMites' Data Science Training in Guadalajara, participants receive the prestigious IABAC Certification, globally recognized as evidence of their competence in data science concepts and practical applications.

To excel in data science training in Guadalajara, individuals should establish a solid foundation in mathematics, statistics, and programming. Developing strong analytical skills, proficiency in languages like Python or R, and hands-on experience with tools like Hadoop or SQL databases is recommended.

Opting for online data science training in Guadalajara from DataMites provides flexibility, accessibility, a comprehensive curriculum aligned with industry needs, industry-relevant content, experienced instructors, interactive learning, and the ability to learn at one's own pace.

The data science training fee in Guadalajara ranges from MXN 9,148 to MXN 22,873 depending on the specific program.

Certainly, DataMites offers a Data Scientist Course in Guadalajara, incorporating practical learning with over 10 capstone projects and a dedicated client/live project for hands-on experience and real-world applications.

Trainers at DataMites are chosen based on certifications, extensive industry experience, and expertise in the subject matter.

DataMites offers flexible learning methods, including Live Online data science training in Guadalajara and self-study, tailored to participants' preferences.

The FLEXI-PASS option in DataMites' Certified Data Scientist Course allows participants to join multiple batches, enabling them to review topics, address doubts, and solidify comprehension across various sessions for a comprehensive understanding of the course content.

Certainly, upon successful completion of DataMites' Data Science Course, participants can obtain a Certificate of Completion by requesting it through the online portal. This certification serves as validation of their proficiency in data science, enhancing their credibility in the job market.

Yes, participants must bring a valid Photo ID Proof, such as a National ID card or Driving License, to obtain a Participation Certificate and schedule the certification exam as needed.

In case of a missed session in the DataMites Certified Data Scientist Course in Guadalajara, participants usually have the option to access recorded sessions or attend support sessions to make up for missed content and clarify doubts.

Yes, potential participants at DataMites can attend a demo class before making any payment for the Certified Data Scientist Course in Guadalajara to assess the teaching style, course content, and overall structure.

Yes, DataMites incorporates internships into its certified data scientist course in Guadalajara, providing a unique learning experience that combines theoretical knowledge with practical industry exposure, enhancing skills and job opportunities in the dynamic field of data science.

Yes, upon completing the Data Science training, you will be granted an internationally recognized IABAC® certification. This certification confirms your proficiency in the field and elevates your employability on a global level.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

DATA SCIENCE COURSE PROJECTS

DATA SCIENCE JOB INTERVIEW QUESTIONS

Global DATA SCIENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog