DATA SCIENCE CERTIFICATION AUTHORITIES

Data Science Course Features

DATA SCIENCE LEAD MENTORS

DATA SCIENCE COURSE FEE IN MADRID, SPAIN

Live Virtual

Instructor Led Live Online

Euro 1,860
Euro 1,479

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Live Online Training
  • 25 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

Euro 1,110
Euro 905

  • Self Learning + Live Mentoring
  • IABAC® & NASSCOM® Certification
  • 1 Year Access To Elearning
  • 25 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Leaner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA SCIENCE ONLINE CLASSES IN MADRID

BEST DATA SCIENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA SCIENCE COURSE

Why DataMites Infographic

SYLLABUS OF DATA SCIENCE COURSE IN MADRID

MODULE 1: DATA SCIENCE ESSENTIALS 

 • Introduction to Data Science
 • Evolution of Data Science
 • Big Data Vs Data Science
 • Data Science Terminologies
 • Data Science vs AI/Machine Learning
 • Data Science vs Analytics

MODULE 2: DATA SCIENCE DEMO

 • Business Requirement: Use Case
 • Data Preparation
 • Machine learning Model building
 • Prediction with ML model
 • Delivering Business Value.

MODULE 3: ANALYTICS CLASSIFICATION 

 • Types of Analytics
 • Descriptive Analytics
 • Diagnostic Analytics
 • Predictive Analytics
 • Prescriptive Analytics
 • EDA and insight gathering demo in Tableau

MODULE 4: DATA SCIENCE AND RELATED FIELDS

 • Introduction to AI
 • Introduction to Computer Vision
 • Introduction to Natural Language Processing
 • Introduction to Reinforcement Learning
 • Introduction to GAN
 • Introduction to Generative Passive Models

MODULE 5: DATA SCIENCE ROLES & WORKFLOW

 • Data Science Project workflow
 • Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
 • Data Science Project stages.

MODULE 6: MACHINE LEARNING INTRODUCTION

 • What Is ML? ML Vs AI
 • ML Workflow, Popular ML Algorithms
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS

 • Data Science in Finance and Banking
 • Data Science in Retail
 • Data Science in Health Care
 • Data Science in Logistics and Supply Chain
 • Data Science in Technology Industry
 • Data Science in Manufacturing
 • Data Science in Agriculture

MODULE 1: PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1: OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2: HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3: EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empirical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4: HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

 

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2:  PYTHON NUMPY  PACKAGE 

 • Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3:  PYTHON PANDAS PACKAGE 

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1: FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4:  ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING 

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7: GRADIENT BOOSTING, XGBOOST

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python 

MODULE 2: SENTIMENT ANALYSIS 

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3: REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4:  ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure, AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8:  INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION 

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

MODULE 2:  SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS 

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL) 

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS 

 • Inner Join, Outer Join
 • Left Join, Right Join
 • Self Join, Cross join
 • Windows function: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES 

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

MODULE 7 : DOCUMENT DB/NO-SQL DB 

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

 • Code Commits
 • Pull, Fetch and Conflicts resolution
 • Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

 • Organize code with branches
 • Checkout branch
 • Merge branches
 • Editing Commits
 • Commit command Amend flag
 • Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET

 • Creating GitHub Account
 • Local and Remote Repo
 • Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

 • Big Data Overview
 • Five Vs of Big Data
 • What is Big Data and Hadoop
 • Introduction to Hadoop
 • Components of Hadoop Ecosystem
 • Big Data Analytics Introduction

MODULE 2 : HDFS AND MAP REDUCE 

 • HDFS – Big Data Storage
 • Distributed Processing with Map Reduce
 • Mapping and reducing stages concepts
 • Key Terms: Output Format, Partitioners,
 • Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

 • PySpark Introduction
 • Spark Configuration
 • Resilient distributed datasets (RDD)
 • Working with RDDs in PySpark
 • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

 • Introducing Spark SQL
 • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2:  POWER-BI BASICS

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES 

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES 

• Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

OFFERED DATA SCIENCE COURSES IN MADRID

DATA SCIENCE COURSE REVIEWS

ABOUT DATA SCIENTIST TRAINING IN MADRID

The Data Science course in Madrid opens up a myriad of opportunities, providing individuals with the knowledge to extract crucial insights from data. This program addresses the growing demand for data-driven decision-making across various industries, fostering innovation in the unique Maldivian context. According to a Mordor Intelligence report, the market size of Data Science Platforms is projected to reach around USD 133.70 billion in 2024, with an expected growth to USD 276.18 billion by 2029, indicating a Compound Annual Growth Rate (CAGR) of 15.61% from 2024 to 2029. Amid this global trend, Madrid has firmly established itself in the field of data science, making it imperative for individuals to pursue data science courses in Madrid to thrive in this ever-evolving domain.

DataMites, a globally recognized institute, is at the forefront of providing top-notch data science training. Tailored for both beginners and intermediates, the Certified Data Scientist Course in Madrid incorporates a globally acknowledged curriculum in data science and machine learning, ensuring that aspiring professionals undergo a transformative learning experience and acquire essential skills for success in the dynamic field of data science. Furthermore, our courses include IABAC certification, providing a valuable credential to enhance your professional profile.

The Data Science Training in Madrid follows a three-phase learning approach:

Initial Phase: Participants undertake pre-course self-study using high-quality videos and a user-friendly learning method.

Second Phase: Live training includes an extensive syllabus, hands-on projects, and guidance from experienced trainers.

Third Phase: Participants undergo a 4-month project mentoring period, an internship, complete 20 capstone projects, participate in one client/live project, and receive an experience certificate.

DataMites delivers comprehensive Data Science Training in Madrid, offering a wide range of well-rounded programs.

Lead Mentorship: Ashok Veda, a distinguished data scientist, leads our faculty at DataMites, ensuring students receive a top-tier education from industry leaders.

Comprehensive Curriculum: The 8-month course, spanning 700 learning hours, provides a thorough understanding of data science, equipping students with in-depth knowledge.

Global Accreditation: DataMites proudly offers prestigious certifications from IABAC®, validating the excellence and relevance of our courses.

Practical Project Engagement: Engage in 25 Capstone projects and 1 Client Project using real-world data, offering a unique opportunity to apply theoretical knowledge in practical scenarios.

Flexible Learning Options: Customize your learning experience with online data science courses and self-study modules, allowing you to navigate the curriculum at your preferred pace.

Focus on Real-World Data: DataMites emphasizes hands-on learning through projects involving real-world data, ensuring students gain valuable practical experience.

DataMites Exclusive Learning Community: Join the exclusive learning community at DataMites, a dynamic platform fostering collaboration, knowledge exchange, and networking among like-minded data science enthusiasts.

Internship Opportunities: Data science courses with internship opportunities in Madrid empower students to gain real-world experience and enhance their skills.

Madrid, the vibrant capital of Madrid, captivates with its rich history, cultural treasures, and lively atmosphere. In addition to its cultural allure, Madrid boasts a booming IT industry, attracting tech professionals and fostering innovation in the heart of the city.

The career scope of data science in Madrid is flourishing, as the city embraces technological advancements, creating ample opportunities for professionals to excel in data-driven roles and contribute to the dynamic landscape of information analysis and decision-making. Moreover, the salary of a data scientist in Madrid ranges from EUR 39,375 per year according to a Glassdoor report.

Explore a range of courses at DataMites covering Artificial Intelligence, Tableau, Data Analytics, Machine Learning, Data Engineering, python, and more. Taught by industry experts, our extensive programs ensure you gain vital skills essential for a successful career. Join DataMites, the premier institute for comprehensive data science training in Madrid, and develop profound expertise in the field.

ABOUT DATAMITES DATA SCIENCE COURSE IN MADRID

The Data Science realm encompasses a wide range, incorporating machine learning, statistics, and data analysis, to extract insights for informed decision-making.

Big Data and Data Science intersect in the management and analysis of large datasets, with Big Data emphasizing tools and technologies for handling extensive data volumes.

 While coding experience is advantageous, those without it can still enter Data Science through the use of no-code/low-code platforms.

Educational qualifications for Data Science roles typically include a bachelor's or master's degree in related fields such as computer science, statistics, or mathematics.

 Aspiring Data Scientists should possess programming skills (e.g., Python), statistical knowledge, machine learning expertise, data visualization skills, and strong problem-solving abilities.

Building an effective portfolio involves showcasing real-world projects, emphasizing problem-solving skills, and demonstrating proficiency in relevant tools and techniques.

 Proficiency in Python is often considered crucial for Data Science roles due to its popularity in data analysis, machine learning, and building data pipelines.

The typical career path for a Data Scientist in Madrid may include roles such as Data Analyst, Junior Data Scientist, Senior Data Scientist, with potential progression to managerial positions.

 Eligibility for Data Science Certification Courses is generally open to individuals with a background in mathematics, statistics, computer science, or related fields.

 Initial steps for individuals entering the Data Science field in Madrid include gaining foundational knowledge, acquiring relevant technical skills, and networking with local professionals and organizations.

Compensation for Data Scientists in Madrid varies but is influenced by experience, skills, and industry, with an average salary range of EUR 39,375 annually.

To craft an impactful portfolio for a Data Science position, showcase diverse projects, highlight technical skills, and include clear explanations of methodologies and outcomes.

High demand for Data Scientists is currently observed in tech hubs like Silicon Valley, financial centers, and healthcare sectors globally.

 Emerging trends in Data Science include explainable AI, automated machine learning, and an increased focus on ethical considerations in AI applications.

A postgraduate degree is not always a prerequisite for data science training in Madrid; many programs accept candidates with relevant experience and skills.

The Data Science workflow involves data collection, cleaning, exploration, modeling, validation, and deployment, with iterative steps for continuous improvement.

 Data Science in Madrid contributes to business growth through improved decision-making, customer insights, and optimized operations, enhancing competitiveness.

The Certified Data Scientist Course is a top-tier option for data science training in Madrid, covering essential topics such as machine learning and data analysis.

 Industries utilizing Data Science range from finance and healthcare to e-commerce and telecommunications, with applications in predictive analytics, fraud detection, and personalized marketing.

Data Science focuses on extracting insights from data, while Machine Learning is a subset that involves training models to make predictions or decisions based on data.

View more

FAQ’S OF DATA SCIENCE TRAINING IN MADRID

The DataMites Certified Data Scientist Course in Madrid is a globally recognized program in Data Science and Machine Learning, regularly updated to meet industry demands. It provides a systematic learning experience for efficient and focused learning.

Certainly, DataMites in Madrid offers a range of data science certifications, including Diploma in Data Science, Certified Data Scientist, Data Science for Managers, Data Science Associate, Statistics for Data Science, Python for Data Science, and specialized courses in Marketing, Operations, Finance, and HR.

For beginners in Madrid entering the data science field, entry-level training options include courses like Certified Data Scientist, Data Science in Foundation, and Diploma in Data Science.

Yes, DataMites in Madrid offers specialized courses for working professionals, such as Statistics for Data Science, Data Science with R Programming, Python for Data Science, Data Science Associate, and certifications in Operations, Marketing, HR, and Finance.

The duration of DataMites' data scientist course in Madrid ranges from 1 month to 8 months, depending on the specific level of the course.

 Enrollment in the Certified Data Scientist Training in Madrid is open to beginners and intermediate learners in the field of data science, with no prerequisites required.

 Online data science training in Madrid from DataMites offers benefits such as adaptability, accessibility, a comprehensive curriculum, industry-relevant content, expert instructors, and interactive learning experiences.

 DataMites' data science training fee in Madrid ranges from EUR 432 to EUR 1,222, providing affordable options for individuals to access quality education in the field of data science.

Instructors at DataMites are chosen based on certifications, extensive industry experience, and mastery of the subject matter to ensure high-quality training sessions.

 Yes, participants are required to bring a valid Photo ID Proof, such as a National ID card or Driving License, to obtain a Participation Certificate and schedule the certification exam as needed.

In the DataMites Certified Data Scientist Course in Madrid, participants have the flexibility to access recorded sessions or participate in support sessions if they miss a class. This ensures that learners can review missed content, clarify uncertainties, and stay aligned with the course curriculum.

Certainly, prospective participants in the Certified Data Scientist Course in Madrid have the opportunity to attend a demo class before making any payment. This allows them to assess the teaching style, course content, and overall structure, empowering them to make an informed enrollment decision.

DataMites incorporates internships into its certified data scientist course in Madrid, offering a unique learning experience that combines theoretical knowledge with practical industry exposure. This enhances skills and job opportunities in the dynamic field of data science.

Designed exclusively for managers and leaders, the "Data Science for Managers" course at DataMites is crafted to meet their specific requirements. This course equips them with essential skills to seamlessly integrate data science into decision-making processes, facilitating well-informed and strategic choices.

Certainly, individuals in Madrid participating in the program have the choice to attend help sessions, providing a valuable opportunity for a more in-depth understanding of specific data science topics. This ensures a thorough learning experience and addresses individual queries effectively.

 Indeed, DataMites offers a Data Scientist Course in Madrid that includes hands-on learning with over 10 capstone projects and a dedicated client/live project. This practical experience enhances participants' skills by providing real-world applications and industry-relevant exposure.

Certainly, DataMites provides a Data Science Course Completion Certificate. Upon successful completion of the course, participants can request the certificate through the online portal. This certificate validates their proficiency in data science, enhancing credibility in the job market.

The FLEXI-PASS feature in DataMites' Certified Data Scientist Course allows participants to enroll in multiple batches, providing flexibility to revisit topics, address uncertainties, and deepen comprehension through various sessions. This ensures a comprehensive and personalized learning experience.

DataMites' career mentoring sessions adopt an interactive format, offering personalized guidance on resume building, interview preparation, and career strategies. These sessions provide valuable insights and effective strategies to elevate participants' professional journey in the field of data science.

DataMites in Madrid provides live online training, facilitating real-time interaction with instructors and creating an engaging and interactive learning environment for participants. Participants can also access recorded sessions at their convenience, allowing for a personalized learning pace and accommodating diverse schedules to optimize learning outcomes.

Upon successfully finishing the Data Science training, you will receive an internationally recognized IABAC® certification. This certification validates your expertise in the field and enhances your employability on a global scale.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

DATA SCIENCE COURSE PROJECTS

DATA SCIENCE JOB INTERVIEW QUESTIONS

Global DATA SCIENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog