DATA ENGINEER CERTIFICATION AUTHORITIES

COURSE FEATURES

DATA ENGINEER COURSE LEAD MENTORS

DATA ENGINEER COURSE FEE IN KHARADI, PUNE

Live Virtual

Instructor Led Live Online

110,000
62,423

  • IABAC® & NASSCOM® Certification
  • 6-Month | 150+ Learning Hours
  • 50+Hour Live Online Training
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

55,000
35,773

  • IABAC® & NASSCOM® Certification
  • One year access to Self Learning
  • 10 Capstone Projects
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Classroom

In - Person Classroom Training

110,000
67,548

  • IABAC® & NASSCOM® Certification
  • 6-Month | 150+ Learning Hours
  • 50+Hour Classroom Training
  • 10 Capstone & 1 Client Project
  • Cloud Lab Access
  • Internship + Job Assistance

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA ENGINEER ONLINE CLASSES IN KHARADI

BEST CERTIFIED DATA ENGINEER CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES FOR DATA ENGINEER TRAINING

Why DataMites Infographic

SYLLABUS OF DATA ENGINEER CERTIFICATION COURSE

MODULE 1: DATA ENGINEERING INTRODUCTION

• What is Data Engineering?
• Data Engineering scope
• Data Ecosystem, Tools and platforms
• Core concepts of Data engineering

MODULE 2: DATA SOURCES AND DATA IMPORT

• Types of data sources
• Databases: SQL and Document DBs
• Managing Big data

MODULE 3: DATA INTEGRITY AND PRIVACY

• Data integrity basics
• Various aspects of data privacy
• Various data privacy frameworks and standards
• Industry related norms in data integrity and privacy: data engineering perspective

MODULE 4: DATA ENGINEERING ROLE

• Who is a data engineer?
• Various roles of data engineer
• Skills required for data engineering
• Data Engineer Collaboration with Data Scientist and other roles.

 

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python objects
• Python basic data types
• String functions part 
• String functions part 
• Python Operators

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement, IF-ELSE
• NESTED IF
• Python Loops Basics, WHILE Statement
• BREAK and CONTINUE statements
• FOR statements

MODULE 3: PYTHON PACKAGES

• Introduction to Packages in Python
• Datetime Package and Methods

MODULE 4: PYTHON DATA STRUCTURES

• Basic Data Structures in Python
• Basics of List
• List methods
• Tuple: Object and methods
• Sets: Object and methods
• Dictionary: Object and methods

MODULE 5: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

• Introduction to Statistics: Descriptive And Inferential Statistics
• a.Descriptive Statistics
• b.Inferential Statistis
• Basic Terms Of Statistics
• Types Of Data

MODULE 2 : HARNESSING DATA 

• Random Sampling 
• Sampling With Replacement And Without Replacement
• Cochran's Minimum Sample Size
• Types of Sampling 
• Simple Random Sampling
• Stratified Random Sampling
• Cluster Random Sampling
• Systematic Random Sampling
• Multistage Sampling 
• Sampling Error
• Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

• Exploratory Data Analysis Introduction
• Measures Of Central Tendencies, Measure of Spread
• Data Distribution Plot: Histogram
• Normal Distribution
• Z Value / Standard Value
• Empherical Rule and Outliers
• Central Limit Theorem
• Normality Testing
• Skewness & Kurtosis
• Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
• Covariance and Correlation

MODULE 4 : HYPOTHESIS TESTING 

• Hypothesis Testing Introduction 
• Types of Hypothesis
• P- Value, Crtical Region
• Types of Hypothesis Testing: Parametric, Non-Parametric
• Hypothesis Testing Errors : Type I And Type II
• Two Sample Independent T-test
• Two Sample Relation T-test
• One Way Anova Test
• Application of Hypothesis Testing (Proposed)

MODULE 1: DATA WAREHOUSE FOUNDATION

• Data Warehouse Introduction
• Database vs Data Warehouse
• Data Warehouse Architecture
• Data Lake house
• ETL (Extract, Transform, and Load)
• ETL vs ELT
• Star Schema and Snowflake Schema
• Data Mart Concepts
• Data Warehouse vs Data Mart —Know the Difference
• Data Lake Introduction architecture
• Data Warehouse vs Data Lake

MODULE 2: DATA PROCESSING

• Python NumPy Package Introduction
• Array data structure, Operations
• Python Pandas package introduction
• Data structures: Series and DataFrame
• Importing data into Pandas DataFrame
• Data processing with Pandas

MODULE 3: DOCKER AND KUBERNETES FOUNDATION

• Docker Introduction
• Docker Vs.VM
• Hands-on: Running our first container
• Common commands (Running, editing,stopping,copying and managing images)YAML(Basics)
• Publishing containers to DockerHub
• Kubernetes Orchestration of Containers 
• Docker swarm vs kubernetes

MODULE 4: DATA ORCHESTRATION WITH APACHE AIRFLOW

• Data Orchestration Overview
• Apache Airflow Introduction
• Airflow Architecture
• Setting up Airflow
• TAG and DAG
• Creating Airflow Workflow
• Airflow Modular Structure
• Executing Airflow

MODULE 5: DATA ENGINEERING PROJECT

• Setting Project Environment
• Data pipeline setup
• Hands-on: build scalable data pipelines

MODULE 1 : AWS DATA SERVICES INTRODUCTION 

• AWS Overview and Account Setup
• AWS IAM Users, Roles and Policies
• AWS S overview
• AWS EC overview
• AWS Lamdba overview
• AWS Glue overview
• AWS Kinesis overview
• AWS Dynamodb overview
• AWS Athena overview
• AWS Redshift overview

MODULE 2 : DATA PIPELINE WITH GLUE

• AWS Glue Crawler and setup
• ETL with AWS Glue
• Data Ingesting with AWS Glue

MODULE 3 : DATA PIPELINE WITH AWS KINESIS 

• AWS Kinesis overview and setup
• Data Streams with AWS Kinesis
• Data Ingesting from AWS S using AWS Kinesis

MODULE 4 : DATA WAREHOUSE WITH AWS REDSHIFT 

• AWS Redshift Overview
• Analyze data using AWS Redshift from warehouses, data lakes and operations DBs
• Develop Applications using AWS Redshift cluster
• AWS Redshift federated Queries and Spectrum

MODULE 5 : DATA PIPELINE WITH AZURE SYNAPSE 

• Azure Synapse setup
• Understanding Data control flow with ADF
• Data Pipelines with Azure Synapse
• Prepare and transform data with Azure Synapse Analytics

MODULE 6 : STORAGE IN AZURE 

• Create Azure storage account
• Connect App to Azure Storage
• Azure Blob Storage

MODULE 7: AZURE DATA FACTORY

• Azure Data Factory Introduction
• Data transformation with Data Factory
• Data Wrangling with Data Factory

MODULE 8 : AZURE DATABRICKS

• Azure databricks introduction
• Azure databricks architecture
• Data Transformation with databricks

MODULE 9 : AZURE RDS

• Creating a Relational Database
• Querying in and out of Relational Database
• ETL from RDS to databricks

MODULE 10 : AZURE RDS

• Hands-on Project Case-study
• Setup Project Development Env
• Organization of Data Sources
• AZURE/AWS services for Data Ingestion
• Data Extraction Transformation

MODULE 1: GIT INTRODUCTION

• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture

MODULE 2: GIT REPOSITORY and GitHub

• Git Repo Introduction
• Create New Repo with Init command
• Copying existing repo
• Git user and remote node
• Git Status and rebase
• Review Repo History
• GitHub Cloud Remote Repo

MODULE 3: COMMITS, PULL, FETCH AND PUSH

• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING

• Organize code with branches
• Checkout branch
• Merge branches

MODULE 5: UNDOING CHANGES

• Editing Commits
• Commit command Amend flag
• Git reset and revert

MODULE 6: GIT WITH GITHUB AND BITBUCKET

• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers

MODULE 1 : DATABASE INTRODUCTION 

  • DATABASE Overview
  • Key concepts of database management
  • CRUD Operations
  • Relational Database Management System
  • RDBMS vs No-SQL (Document DB)

MODULE 2 : SQL BASICS 

  • Introduction to Databases
  • Introduction to SQL
  • SQL Commands
  • MY SQL  workbench installation
  • Comments
  • import and export dataset

MODULE 3 : DATA TYPES AND CONSTRAINTS 

  • Numeric, Character, date time data type
  • Primary key, Foreign key, Not null
  • Unique, Check, default, Auto increment

MODULE 4 : DATABASES AND TABLES (MySQL) 

  • Create database
  • Delete database
  • Show and use databases
  • Create table, Rename table
  • Delete table, Delete  table records
  • Create new table from existing data types
  • Insert into, Update records
  • Alter table

MODULE 5 : SQL JOINS 

  • Inner join
  • Outer join
  • Left join
  • Right join
  • Cross join
  • Self join

MODULE 6 : SQL COMMANDS AND CLAUSES 

  • Select, Select distinct
  • Aliases, Where clause
  • Relational operators, Logical
  • Between, Order by, In
  • Like, Limit, null/not null, group by
  • Having, Sub queries

MODULE 7 : DOCUMENT DB/NO-SQL DB

  • Introduction of Document DB
  • Document DB vs SQL DB
  • Popular Document DBs
  • MongoDB basics
  • Data format and Key methods
  • MongoDB data management

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Key Terms: Output Format
• Partitioners Combiners Shuffle and Sort
• Hands-on Map Reduce task

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Resilient distributed datasets (RDD),Working with RDDs in PySpark, Spark Context , Aggregating Data with Pair RDDs
• Spark Databricks
• Spark Streaming

MODULE 1: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
• Working with Spark SQL Query Language

MODULE 2: KAFKA and Spark

• Kafka architecture
• Kafka workflow
• Configuring Kafka cluster
• Operations

MODULE 3: KAFKA and Spark

• Creating an HDFS cluster with containers
• Creating pyspark cluster with containers
• Processing data on hdfs cluster with pyspark cluster

MODULE 1: TABLEAU FUNDAMENTALS

• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies

MODULE 2: POWER-BI Basics

• Power BI Introduction 
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION

MODULE 3: DATA TRANSFORMATION TECHNIQUES

• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values

MODULE 4: CONNECTING TO VARIOUS SOURCES

• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA ENGINEER TRAINING COURSE REVIEWS

ABOUT DATA ENGINEER COURSE IN KHARADI

As the global big data and data engineering services market accelerates from $39.50 billion in 2020 to a projected $87.37 billion by 2025, the moment is ripe to enroll in a Data Engineer Course. Market Data Forecast's insight highlights the surging demand for skilled professionals in this burgeoning industry. Joining a Data Engineer Course ensures you're equipped with the latest skills, positioning you as an invaluable asset in this dynamic landscape.

DataMites is delighted to introduce a comprehensive Data Engineer Course in Kharadi meticulously crafted to empower both students and professionals with the essential skills required to thrive in the dynamic field of data engineering. This extensive 6-month program, encompassing over 150 learning hours, provides thorough training across various facets of data engineering. Participants will engage in more than 50 hours of live online/classroom training, collaborating with seasoned instructors to gain practical insights into real-world scenarios. The curriculum includes 10 capstone projects and 1 client project, enabling participants to apply their knowledge to industry-specific challenges. Additionally, a 365-day flexi pass is included, granting access to course materials and the cloud lab for hands-on practice.

Moreover, on-demand offline data engineering courses in Kharadi offer flexibility for individuals who prefer a traditional classroom environment. Led by experienced instructors and featuring structured content, these courses cater to the specific learning needs in Kharadi, allowing participants to acquire valuable data engineering skills.

Key considerations for selecting DataMites for Data Engineer Training in Kharadi include:

Expert Instructors: The institute prides itself on highly experienced instructors, including the renowned data scientist  Ashok Veda, offering invaluable guidance throughout the course.

Comprehensive Curriculum: DataMites offers an extensive course curriculum covering all essential topics and techniques in data engineering, ensuring participants establish a robust foundation in the field.

Global Certifications: Participants have the opportunity to obtain globally recognized certifications such as IABAC, NASSCOM FutureSkills Prime, and JainX, significantly enhancing their career prospects.

Flexible Learning Options: DataMites caters to diverse learning preferences, allowing individuals to choose between online data engineer courses in Kharadi and data engineer offline training in Kharadi.

Practical Knowledge: The course integrates real-world projects and data engineering internship opportunities to enhance practical knowledge and provide hands-on experience.

Placement Assistance: DataMites offers a data engineer course with placement assistance and job references, facilitating connections with potential employers for rewarding data engineering roles.

Learning Materials: Participants receive hardcopy learning materials and books to supplement their online learning experience.

Learning Community: The exclusive DataMites learning community fosters networking and knowledge sharing among learners.

Affordable Pricing and Scholarships: The institute ensures accessibility by providing affordable pricing options and scholarships, making quality data engineering training available to a wide range of individuals in Kharadi.

Elevate your career by attaining a recognized Data Engineer Certification in Kharadi, a pathway to expanded job prospects and fresh career horizons. DataMites, distinguished for its quality training, extends certification programs designed to guide individuals in Kharadi toward achieving their certification aspirations, reinforcing their professional profile.

ABOUT DATAMITES DATA ENGINEER COURSE IN KHARADI

Data engineering involves the intricate process of designing, constructing, and overseeing the foundational infrastructure and systems necessary for efficiently handling substantial data volumes. The goal is to ensure data's ready availability, unwavering reliability, and seamless accessibility, facilitating well-informed decision-making.

a. Forge a robust foundation in mathematical principles, statistical methodologies, and advanced programming languages.

b. Master the art of data manipulation, database administration, and the seamless integration of complex datasets.

c. Attain proficiency in avant-garde big data technologies, encompassing Hadoop, Spark, and diverse cloud platforms.

d. Craft a compelling portfolio showcasing diverse and impactful data engineering projects.

e. Embark on internships or secure entry-level positions with organizations placing a premium on cutting-edge data engineering capabilities.

f. Stay ahead of the curve by remaining attuned to emerging technologies and industry trends.

The journey towards becoming a proficient data engineer is uniquely variable, typically spanning from six months to two years. This timeframe hinges on individual circumstances and the chosen educational pathway.

Critical skills encompass proficiency in programming languages, mastery of SQL, a deep understanding of big data technologies, prowess in data modeling, familiarity with cloud platforms, and a robust combination of problem-solving and communication acumen.

  • a. Attain a profound understanding of sophisticated data engineering concepts, tools, and methodologies.
  • b. Gain hands-on experience with industry-standard technologies, fortifying practical skills.
  • c. Experience a substantial upswing in job prospects, coupled with an augmented earning potential.
  • d. Cultivate a solid foundation, paving the way for sustained career progression within data-centric roles.

a. Demonstrate a foundational grasp of mathematical, statistical, and programming principles.

b. Showcase familiarity with databases, coupled with proficiency in SQL.

c. Exhibit proficiency in at least one programming language, be it Python, Java, or a comparable language.

d. Demonstrate knowledge of data manipulation techniques and analytical methodologies.

The costs associated with data engineering training in Itanagar typically range from 40,000 INR to 1,00,000 INR. This estimation is contingent on variables such as the institute, program duration, and the depth of instruction.

DataMites stands out as the institute of choice for data engineering training. Renowned for its comprehensive curriculum, hands-on industry projects, and seasoned instructors, DataMites provides an immersive and unparalleled learning experience.

Upon completing training, individuals unlock an array of opportunities, spanning roles such as Data Engineer, Data Analyst, Big Data Engineer, ETL Developer, Database Administrator, and Cloud Data Engineer across diverse industries.

The annual salary for Data Engineers in Pune, as per Glassdoor's average, stands at ₹8,59480, highlighting the escalating importance of their pivotal role in the industry.

FAQ'S OF DATA ENGINEER TRAINING IN KHARADI

To acquire data engineering skills in Kharadi, consider enrolling in DataMites®. They offer a comprehensive training program available both online and in-person to prepare you for real-world applications.

The DataMites® program in Kharadi covers a wide array of subjects, including data integration, modeling, ETL processes, data warehousing, big data technologies, and cloud platforms. It incorporates hands-on projects and real-world case studies for practical skill enhancement.

The Data Engineer Course at DataMites® in Kharadi is designed for individuals with foundational knowledge in mathematics, statistics, and programming. It caters to aspiring data engineers, IT professionals, software engineers, and those transitioning into data engineering roles.

The DataMites Data Engineer Course in Kharadi typically spans six months, encompassing over 150 learning hours for a thorough exploration of the curriculum.

Opting for online data engineer training from DataMites® provides flexibility for self-paced learning. You gain access to industry-expert instructors, hands-on assignments, real-world projects, interactive materials, and the opportunity to network globally.

The cost of the DataMites Data Engineer Training in Kharadi varies based on learning mode and additional services. Generally ranging from INR 26,548 to INR 68,000, it represents a valuable investment in education and career development.

Yes, DataMites® offers classroom training for Data Engineer courses in Kharadi, providing in-person learning experiences and interactions with instructors and peers. Offline training options are also available on demand.

Looking for data engineer courses in Pune? DataMites conducts classroom training in locations such as Baner and Kharadi, ensuring that learners have diverse and convenient options for their educational endeavors.

Instructors for the Data Engineer Course at DataMites® in Kharadi are qualified professionals with substantial experience in data engineering. They possess practical industry insights and in-depth knowledge of the subject matter.

The Flexi-Pass by DataMites® allows learners flexibility to access recorded sessions, enabling revisits or catching up on missed classes for a comprehensive learning experience.

Upon completing the Data Engineer training at DataMites®, you'll earn industry-recognized certifications, including those from the International Association of Business Analytics Certifications (IABAC). These certifications validate your skills and carry the prestige of IABAC accreditation, enhancing your credibility and employability in data engineering.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

DATA ENGINEER PROJECTS

DATA ENGINEER JOB INTERVIEW QUESTIONS

OTHER DATA ENGINEER TRAINING CITIES IN INDIA

Global CERTIFIED DATA ENGINEER COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog




Pune Address