Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: DATA ANALYSIS FOUNDATION
• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain
MODULE 2: CLASSIFICATION OF ANALYTICS
• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics
MODULE 3: CRIP-DM Model
• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling, Evaluation, Deploying,Monitoring
MODULE 4: UNIVARIATE DATA ANALYSIS
• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.
MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS
• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot
MODULE 6: BI-VARIATE DATA ANALYSIS
• Scatter Plots
• Regression Analysis
• Correlation Coefficients
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
MODULE 2 : HARNESSING DATA
MODULE 3 : EXPLORATORY DATA ANALYSIS
MODULE 4 : HYPOTHESIS TESTING
MODULE 1: COMPARISION AND CORRELATION ANALYSIS
• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis
MODULE 2: VARIANCE AND FREQUENCY ANALYSIS
• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis
MODULE 3: RANKING ANALYSIS
• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis
MODULE 4: BREAK EVEN ANALYSIS
• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing
MODULE 5: PARETO (80/20 RULE) ANALSYSIS
• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis
MODULE 6: Time Series and Trend Analysis
• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
MODULE 7: DATA ANALYSIS BUSINESS REPORTING
• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
MODULE 1: DATA ANALYTICS FOUNDATION
• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity
MODULE 2: OPTIMIZATION MODELS
• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity
MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION
• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel
MODULE 4: DECISION MODELING
• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool
MODULE 4: ML ALGO: KNN
• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering
MODULE 6: ML ALGO: DECISION TREE
• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool
MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool
MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
The science of studying unstructured data in order to draw inferences about it is known as data analytics. Numerous data analytics approaches and procedures have been mechanised into mechanical procedures and algorithms that analyse raw data for human consumption.
In the fields of engineering, computer science, and management, there are postgraduate courses in data science accessible. A Bachelor's degree with at least 50% overall or an equivalent grade from a reputable university, ideally in the fields of science or computer science, is the minimum requirement for enrollment in a data analytics course.
One of the most sought-after careers in 2022 will be data analysis. India is the second major centre for data-related employment after the United States. Depending on the training level you want, there will be a difference in cost. The cost of data analytics training in Hyderabad might be anything between 30,000 and 100,000 Indian rupees.
For a position as a data analyst, a degree is not usually necessary, but obtaining the necessary certification from an approved college is essential. Acquire the skills required for success in data analytics, it can take anything from six weeks to two years. An effective method to learn about and become skilled at data analytics is to take the DataMites 4-month data analytics training course. The variety is explained by the fact that there are numerous unique routes one might take to become a data analytics professional.
If you're new to the field of data analysis, your first role can be as a junior analyst. If you've had any previous experience and have some transferrable analytical skills, you might be able to get work as a data analyst.
Business Intelligence Analyst
Data Analyst
Data Scientist
Data Engineer
Quantitative Analyst
Marketing Analyst
Project Manager
IT Systems Analyst
Data Analyst Consultant
Operations Analyst
The benefits of a career in data analytics won't manifest without extensive training and effort. Data analysts require a particular set of skills to succeed in their line of work, and while having a technical background is important, they also need a few soft skills.
Data Clearing and Information Display
Linear algebra, MATLAB, R, Python, and NoSQL Machine Learning Calculus
Communication and Critical Thinking in Excel for Windows
The national average salary for a Data Analyst is USD 69,517 per year in the United States. (Glassdoor)
The national average salary for a Data Analyst is £36,535 per annum in the UK. (Glassdoor)
The national average salary for a Data Analyst is INR 6,00,000 per year in India. (Glassdoor)
The national average salary for a Data Analyst is 46,328 EUR per annum in Germany. (Payscale)
The national average salary for a Data Analyst is CHF 95,626 per year in Switzerland. (Glassdoor)
The national average salary for a Data Analyst is AED 106,940 per year in UAE. (Payscale)
The national average salary for a Data Analyst is SAR 95,960 per year in Saudi Arabia. (Payscale.com)
The national average salary for a Data Analyst is C$58,843 per year in Canada. (Payscale)
The national average salary for a Data Analyst is AUD 85,000 per year in Australia. (Glassdoor)
The national average salary for a Data Analyst is ZAR 286,090 per year in South Africa. (Payscale.com)
Salary packages will undoubtedly remain attractive to qualified candidates as the supply of talent is running low, as we previously stated. Compared to other IT careers, switching to a data analytics career has far more financial advantages. As per Payscale, a data analyst's average salary in Hyderabad is 5,05,108 and the data analyst in Hyderabad earns an average amount of 5,31,548 LPA! (Glassdoor)
There are many outstanding work prospects in this industry because there is a growing need for data specialists and a limited supply. The ideal place for you, if you want to pursue a career in analytics, is DataMites. The primary mentors are knowledgeable professionals who are industry-oriented, and the course curriculum is well-planned. We provide projects and internship possibilities for practical experience!
The phrase "data analytics" has become more popular today due to the rise in data generation. As the curriculum is designed to train applicants from level 1, there are no formal prerequisites for the DataMites Data Analytics Course in Hyderabad. However, having prior understanding of programming languages, databases, data structures, mathematics, and algorithms will only be advantageous.
The Certified Data Analyst Course in Hyderabad, which validates your ability to confidently evaluate data using a variety of technologies, is the highest credential in data analytics. A certification shows that you are competent in handling data, doing exploratory research, understanding the foundations of analytics, and visualising, presenting, and elaborating on your findings. IABAC and the famous Jain University both acknowledge the DataMites Certified Data Analyst Training in Hyderabad.
The finest training in the field is the DataMites data analyst certification programme in Hyderabad. Our data analytics course equips you with the tangible evidence you need to prove your suitability for helping organisations, including renowned international corporations, interpret the data at hand. It is evidence that you are qualified to carry out the responsibilities of a particular work role in accordance with industry standards, as opposed to a data analytics certification.
Yes, however, it doesn't need highly developed programming abilities. The fundamentals of Python or R must be mastered, as must expertise in a querying language like SQL. Fortunately, learning the fundamentals of these languages is simple. There is nothing DataMites cannot teach you.
Although both business analytics and data analytics have their own significance, there are some essential differences between them. Data analytics is the process of examining databases to determine the data they contain. You can take raw data and find patterns using data analysing tools to gain insightful knowledge. Business analytics is a practical use of statistical analysis that focuses on giving suggestions that can be put into practise.
There are myriad things to secure your debut job in this in-demand industry, and data analytics jobs may be found in a broad range of sectors. DataMites is intended to help you upskill so that you may become a data analytics professional, whether you're just starting out in the professional world or switching to a new field.
Both amateurs and experts are welcome to enrol in the training. The best option for you if you want to switch from an IT to a business profile is a profession as a data analyst. You will be well-suited to succeed in this industry if you are skilled in coding and IT. Anyone is welcome to enrol in DataMites Training, including those who perform in the banking, human resources, marketing, or sales sectors.
DataMitesTM is a global institute for data science that has received approval from the International Association of Business Analytics Certifications (IABAC).
more than 50,000 candidates were trained
The three-phase learning technique was painstakingly constructed to deliver the best training possible.
Participate in worthwhile initiatives and case studies.
Get the JainX Data Analytics Certification and the global IABAC certification.
Assistance finding internships and jobs
The completion of data analytics training and achievement of certified data analytics specialist status have various advantages in a data-driven environment. Training in data analytics will be provided to you by DataMites for six months.
One of DataMites' top data analytics programmes, the Certified Data Analyst curriculum, has been acknowledged by the illustrious organisations IABAC and JainX, whose credentials you would earn upon successfully completing the programme. Earning the DataMites Certified Data Analyst Training in Hyderabad is encouraged to launch a career in data analytics.
Data analytics has become a broad topic, thus we wish to train informed experts in it. DataMites' instructors are very knowledgeable and have practical expertise in the data industry, so they can offer the best learning environment for your future significant step.
For a period of three months, participants in our Flexi-Pass for Data Analytics Certification Training in Hyderabad are allowed to attend sessions led by Datamites that are pertinent to any question or revision they wish to pass.
You'll surely receive a certificate of completion for your data analytics course in Hyderabad when it's all said and done
We do provide on-demand classroom instruction at your facility. Although you can study from anywhere in the world with the help of our instruction, you won't need to adhere to a strict timetable or commute from one location to another. There are benefits to self-paced learning with a curriculum that is just as useful as in-person instruction.
Carry your valid Photo documents, such as a passport or driver's licence, when you register for the certification exams and receive your participation certificate.
Three stages of learning are offered by DataMites. For self-study in Phase 1, candidates will be given books and videos to assist them learn everything they need to know about the programme. The first part of the intensive live online training is Phase 2, and after you complete it, you'll obtain the IABAC Data Analytics Certification, a universal credential. And we'll assign projects and placements in the third phase.
The DataMites Data Analytics Training is scrupulously developed and structured in this way so that newcomers to the field are given a thorough overview of the entire subject. You can sign up right away if learning analytics appeals to you.
Yes, after the course is finished, our dedicated Placement Assistance Team (PAT) at DataMites will offer you placement services, including help finding a job and interview preparation.
We take payments using;
Cash
Credit Card
PayPal
Visa
Master Card
American Express
Net Banking
Cheque
Debit Card
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.