DATA ANALYTICS CERTIFICATION AUTHORITIES

COURSE FEATURES

DATA ANALYTICS LEAD MENTORS

DATA ANALYTICS COURSE FEE IN LUCKNOW

Live Virtual

Instructor Led Live Online

110,000
63,945

  • IABAC® Certification
  • 6-Month | 200+ Learning Hours
  • 20 HOURS LEARNING A WEEK
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

55,000
36,645

  • Self Learning + Live Mentoring
  • IABAC® Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Classroom

In - Person Classroom Training

110,000
69,195

  • IABAC® Certification
  • 6-Month | 200+ Learning Hours
  • 20 HOURS LEARNING A WEEK
  • 10 Capstone & 1 Client Project
  • Cloud Lab Access
  • Internship +Job Assistance

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA ANALYTICS ONLINE CLASSES IN LUCKNOW

BEST DATA ANALYTICS CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA ANALYTICS COURSE

Why DataMites Infographic

SYLLABUS OF DATA ANALYTICS CERTIFICATION IN LUCKNOW

MODULE 1: DATA ANALYSIS FOUNDATION

• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain

MODULE 2: CLASSIFICATION OF ANALYTICS

• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics

MODULE 3: CRIP-DM Model

• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling
• Evaluation
• Deploying
• Monitoring

MODULE 4: UNIVARIATE DATA ANALYSIS

• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.

MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS

• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot

MODULE 6: BI-VARIATE DATA ANALYSIS

• Scatter Plots
• Regression Analysis
• Correlation Coefficients

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python objects
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
• Operator’s precedence and associativity

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES

• Basic data structure in python
• String object basics and inbuilt methods
• List: Object, methods, comprehensions
• Tuple: Object, methods, comprehensions
• Sets: Object, methods, comprehensions
• Dictionary: Object, methods, comprehensions

MODULE 4: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Iterators
• Generator functions
• Lambda functions
• Map, reduce, filter functions

MODULE 5: PYTHON NUMPY PACKAGE

• NumPy Introduction
• Array – Data Structure
• Core Numpy functions
• Matrix Operations

MODULE 6: PYTHON PANDAS PACKAGE

• Pandas functions
• Data Frame and Series – Data Structure
• Data munging with Pandas
• Imputation and outlier analysis

MODULE 1 : OVERVIEW OF STATISTICS 

  • Descriptive And Inferential Statistics
  • Basic Terms Of Statistics
  • Types Of Data

MODULE 2 : HARNESSING DATA 

  • Random Sampling
  • Sampling With Replacement And Without Replacement
  • Cochran's  Minimum Sample Size
  • Simple Random Sampling
  • Stratified Random Sampling
  • Cluster Random Sampling
  • Systematic Random Sampling
  • Biased Random Sampling Methods
  • Sampling Error
  • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

  • Exploratory Data Analysis Introduction
  • Measures Of Central Tendencies: Mean, Median And Mode
  • Measures Of Central Tendencies: Range, Variance And Standard Deviation
  • Data Distribution Plot: Histogram
  • Normal Distribution
  • Z Value / Standard Value
  • Empherical Rule  and Outliers
  • Central Limit Theorem
  • Normality Testing
  • Skewness & Kurtosis
  • Measures Of Distance: Euclidean, Manhattan And MinkowskiDistance

MODULE 4 : HYPOTHESIS TESTING 

  • Hypothesis Testing Introduction
  • P- Value, Confidence Interval
  • Parametric Hypothesis Testing Methods
  • Hypothesis Testing Errors : Type I And Type Ii
  • One Sample T-test
  • Two Sample Independent T-test
  • Two Sample Relation T-test
  • One Way Anova Test

MODULE 5 : CORRELATION AND REGRESSION

  • Correlation Introduction
  • Direct/Positive Correlation
  • Indirect/Negative Correlation
  • Regression
  • Choosing Right Method
     

MODULE 1: COMPARISION AND CORRELATION ANALYSIS

• Data comparison Introduction
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Performing Comparison Analysis on Data
• Performing correlation Analysis on Data
• Hands-on case study 1: Comparison Analysis
• Hands-on case study 2 Correlation Analysis

MODULE 2: VARIANCE AND FREQUENCY ANALYSIS

• Concept of Variability and Variance
• Data Preparation for Variance Analysis
• Business use cases for Variance and Frequency Analysis
• Performing Variance and Frequency Analysis
• Hands-on case study 1: Variance Analysis
• Hands-on case study 2: Frequency Analysis

MODULE 3: RANKING ANALYSIS

• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis

MODULE 4: BREAK EVEN ANALYSIS

• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Procurement Decision with break even

MODULE 5: PARETO (80/20 RULE) ANALSYSIS

• Pareto rule Introduction
• Preparation Data for Pareto Analysis
• Insights on Optimizing Operations with Pareto Analysis
• Performing Pareto Analysis on Data
• Hands-on case study: Pareto Analysis

MODULE 6: Time Series and Trend Analysis

• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
• Hands-on Case Study: Trend Analysis

MODULE 7: DATA ANALYSIS BUSINESS REPORTING

• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
• Presenting the reports
• Hands-on case study: Create Data Analysis Reports

MODULE 1: DATA ANALYTICS FOUNDATION

• Business Analytics Overview
• Application of Business Analytics
• Visual Perspective
• Benefits of Business Analytics
• Challenges
• Classification of Business Analytics
• Data Sources
• Data Reliability and Validity
• Business Analytics Model

MODULE 2: OPTIMIZATION MODELS

• Prescriptive Analytics with Low Uncertainty
• Mathematical Modeling and Decision Modeling
• Break Even Analysis
• Product Pricing with Prescriptive Modeling
• Building an Optimization Model
• Case Study 1 : WonderZon Network Optimization
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity

MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION

• Mathematics beyond Linear Regression
• Hands on: Regression Modeling in Excel
• Case Study 2 : Sales Promotion Decision with Regression Analysis
• Assignment 2 : Design Marketing Decision board for QuikMark Inc.

MODULE 4: DECISION MODELING

• Prescriptive Analytics with High Uncertainty
• Comparing Decisions in Uncertain Settings
• Decision Trees for Decision Modeling
• Case Study 3 : Decision modeling of Internet Plans, Monte Carlo Simulation
• Case Study 4 : Kickathlon Sports Retailer Supplier Decision Modeling

MODULE 1: MACHINE LEARNING INTRODUCTION

• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSSION

• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool

MODULE 3: ML ALGO: LOGISTIC REGRESSION

• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool

MODULE 4: ML ALGO: KNN

• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Hands-on KNN with ML Tool

MODULE 5: ML ALGO: K MEANS CLUSTERING

• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Hands-on K Means Clustering with ML Tool

MODULE 6: ML ALGO: DECISION TREE

• Random Forest Ensemble technique
• How it works: Bagging Theory
• Hands-on Decision Tree with ML Tool

MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python

MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)

• Introduction to ANN
• How It Works: Back prop, Gradient Descent
• Modeling and Evaluation of ANN in Python

MODULE 9: PROJECT: PREDICTIVE ANALYTICS WITH ML

• Project Business requirements
• Data Modeling
• Building Predictive Model with ML Tool
• Evaluation and Deployment
• Project Documentation and Report

MODULE 1: GIT INTRODUCTION

• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture

MODULE 2: GIT REPOSITORY and GitHub

• Git Repo Introduction
• Create New Repo with Init command
• Copying existing repo
• Git user and remote node
• Git Status and rebase
• Review Repo History
• GitHub Cloud Remote Repo

MODULE 3: COMMITS, PULL, FETCH AND PUSH

• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING

• Organize code with branches
• Checkout branch
• Merge branches

MODULE 5: UNDOING CHANGES

• Editing Commits
• Commit command Amend flag
• Git reset and revert

MODULE 6: GIT WITH GITHUB AND BITBUCKET

• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
• Bitbucket Git account

MODULE 1: DATABASE INTRODUCTION

• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)

MODULE 2: SQL BASICS

• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
• Comments
• import and export dataset

MODULE 3: DATA TYPES AND CONSTRAINTS

• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table

MODULE 5: SQL JOINS

• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join

MODULE 6: SQL COMMANDS AND CLAUSES

• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries

MODULE 7: DOCUMENT DB/NO-SQL DB

• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
• Hands-on Map Reduce task

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
• Working with Spark SQL Query Language

MODULE 5: MACHINE LEARNING WITH SPARK ML

• Introduction to MLlib Various ML algorithms supported by Mlib
• ML model with Spark ML.
• Linear regression
• logistic regression
• Random forest

MODULE 6: KAFKA and Spark

• Kafka architecture
• Kafka workflow
• Configuring Kafka cluster
• Operations

MODULE 1: BUSINESS INTELLIGENCE INTRODUCTION

• What Is Business Intelligence (BI)?
• What Bi Is The Core Of Business Decisions?
• BI Evolution
• Business Intelligence Vs Business Analytics
• Data Driven Decisions With Bi Tools
• The Crisp-Dm Methodology

MODULE 2: BI WITH TABLEAU: INTRODUCTION

• The Tableau Interface
• Tableau Workbook, Sheets And Dashboards
• Filter Shelf, Rows And Columns
• Dimensions And Measures
• Distributing And Publishing

MODULE 3: TABLEAU: CONNECTING TO DATA SOURCE

• Connecting To Data File , Database Servers
• Managing Fields
• Managing Extracts
• Saving And Publishing Data Sources
• Data Prep With Text And Excel Files
• Join Types With Union
• Cross-Database Joins
• Data Blending
• Connecting To Pdfs

MODULE 4: TABLEAU : BUSINESS INSIGHTS

• Getting Started With Visual Analytics
• Drill Down And Hierarchies
• Sorting & Grouping
• Creating And Working Sets
• Using The Filter Shelf
• Interactive Filters
• Parameters
• The Formatting Pane
• Trend Lines & Reference Lines
• Forecasting
• Clustering

MODULE 5: DASHBOARDS, STORIES AND PAGES

• Dashboards And Stories Introduction
• Building A Dashboard
• Dashboard Objects
• Dashboard Formatting
• Dashboard Interactivity Using Actions
• Story Points
• Animation With Pages

MODULE 6: BI WITH POWER-BI

• Power BI basics
• Basics Visualizations
• Business Insights with Power BI

OFFERED DATA ANALYTICS COURSES IN LUCKNOW

DATA ANALYTICS TRAINING REVIEWS

ABOUT DATA ANALYTICS TRAINING IN LUCKNOW

Data analytics is like a secret codebreaker that unlocks the hidden messages within vast amounts of data. Did you know that companies that use data analytics are 3 times more likely to make faster and better decisions than their competitors? By analyzing patterns and trends, data analytics helps businesses gain valuable insights into customer preferences, market dynamics, and operational efficiencies. It's a thrilling journey of exploration, where data becomes the catalyst for innovation and success.

DataMites, a renowned training provider in the field of data analytics, brings you a comprehensive Data Analytics Course in Lucknow. The Certified Data Analyst Training program offered by DataMites Institute is an extensive 4-month course comprising more than 200 hours of learning. The curriculum covers a wide range of topics, including statistical analysis, data visualization, machine learning, and predictive modeling. By dedicating an average of 20 hours per week, students can ensure a deep understanding of the subject matter. The course's standout feature is the incorporation of 10 Capstone Projects and 1 Client Project, enabling students to tackle real-world data analytics challenges and deliver practical solutions.

Here are 10 reasons to choose DataMites for Data Analytics Training in Lucknow. 

  • First, the institute boasts experienced faculty members like Ashok Veda, who bring their expertise and industry knowledge to the classroom. 

  • Second, the course curriculum is comprehensive, covering all the essential concepts and techniques of data analytics. 

  • Third, students have the opportunity to earn globally recognized certifications from IABAC, NASSCOM FutureSkills Prime, and JainX, enhancing their professional credibility.

  • Fourth, DataMites offers flexible learning options including ON DEMAND data analytics classroom training in Lucknow, online data analytics training in Lucknow, and self-paced learning, allowing students to balance their studies with other commitments.

  • Fifth, the course incorporates projects with real-world data, providing hands-on experience and practical exposure to real-life data analytics challenges. 

  • Sixth, DataMites offers data analytics internship opportunities to students, allowing them to apply their skills in a professional setting. 

  • Seventh, the institute provides data analytics training with placement assistance and job references to help students kickstart their careers in data analytics. 

  • Eighth, students receive hardcopy learning materials and books, facilitating their learning experience. 

  • Ninth, DataMites has an exclusive learning community where students can connect, collaborate, and learn from their peers. 

  • Lastly, the institute offers affordable pricing options and scholarships, making data analytics training accessible to a wider audience.

Located in the vibrant city of Lucknow, known as the "City of Nawabs," the data analytics certification offered here presents a unique opportunity for aspiring data analysts. Lucknow, the capital of the Indian state of Uttar Pradesh, is renowned for its rich cultural heritage, historical landmarks, and a thriving business ecosystem. With its blend of tradition and modernity, Lucknow provides an ideal setting for individuals looking to embark on a career in data analytics. By pursuing a data analytics certification in Lucknow, you can tap into a thriving job market and explore exciting career opportunities.

Along with the data analytics courses, DataMites also provides python,tableau, data mining, artificial intelligence, mlops, data science, deep learning, IoT, data engineer, AI expert, r programming and machine learning courses in Lucknow.

ABOUT DATA ANALYTICS COURSE IN LUCKNOW

Data Analytics is the process of collecting, organizing, analyzing, and interpreting large datasets to discover patterns, trends, and insights that assist in decision-making and improving business operations.

Studying Data Analytics is crucial as it enables improved decision-making, enhances efficiency and productivity, provides a competitive advantage, enhances customer understanding, and offers diverse career opportunities.

Individuals from various educational backgrounds, such as mathematics, statistics, computer science, engineering, economics, and business, can pursue a career in Data Analytics. Passion for data analysis, problem-solving, and critical thinking is also valuable in this field.

Data Analytics is utilized in multiple industries, including finance and banking, healthcare and pharmaceuticals, retail and e-commerce, manufacturing and logistics, telecommunications, marketing and advertising, energy and utilities, government and public sector, and sports and entertainment.

Proficiency in programming languages like Python, R, or SQL, strong analytical and problem-solving skills, knowledge of statistical analysis and data visualization techniques, familiarity with database management systems, understanding of machine learning and predictive modeling, and effective communication and storytelling skills are essential for success in Data Analytics.

Data Analytics offers promising career prospects with job opportunities available in technology companies, consulting firms, financial institutions, healthcare organizations, e-commerce companies, and government agencies. Job titles may include Data Analyst, Data Scientist, Business Intelligence Analyst, Data Engineer, Machine Learning Engineer, and Data Consultant, among others.

The average salary for a Data Analyst is approximately £36,535 per annum in the UK, C$58,843 per year in Canada, USD 69,517 per year in the United States, INR 6,00,000 per year in India, AUD 85,000 per year in Australia, 46,328 EUR per annum in Germany, AED 106,940 per year in the UAE, ZAR 286,090 per year in South Africa, CHF 95,626 per year in Switzerland, and SAR 95,960 per year in Saudi Arabia.

The scope of Data Analytics encompasses areas such as data mining, data visualization, predictive modeling, machine learning, and artificial intelligence.

The average data analyst salary in Lucknow is ₹4,47,754 per annum according to glassdoor.

Typically, the price range for Data Analytics training in Lucknow is between 40,000 to 80,000 INR. However, keep in mind that specific institutes may have different pricing structures based on various factors.

While a mathematics background can be beneficial, it is not always a mandatory requirement to pursue a career in data analytics. Individuals with strong logical thinking and problem-solving skills can still enter the field without an extensive mathematics background.

The difficulty level of a Data Analytics course can vary depending on the curriculum, topics covered, and individual aptitude. Data Analytics involves complex concepts, but with dedication, practice, and guidance, it is possible to grasp the concepts and excel in the field.

Typically, a bachelor's degree in a relevant field such as mathematics, statistics, computer science, engineering, economics, or business is required for a career in data analytics. However, specific requirements may vary based on the job position and company. Advanced degrees or certifications in data analytics or related fields may be required for some roles. Continuous learning and upskilling are also important to stay updated with evolving tools and techniques in data analytics.

DataMites is a highly recommended institute for studying data analytics. They offer comprehensive data analytics courses with experienced faculty, practical experience, and a strong industry reputation. DataMites provides placement assistance and has a track record of helping students secure rewarding career opportunities in data analytics.

View more

FAQ’S OF DATA ANALYTICS TRAINING IN LUCKNOW

DataMites stands out as the preferred choice for Data Analytics Courses in Lucknow due to several reasons. These include:

  • Expert Faculty:

  • The faculty at DataMites is highly experienced and knowledgeable in the field of data analytics.

  • Comprehensive Curriculum:

  • The curriculum offered by DataMites is comprehensive and covers all the necessary topics and skills required for data analytics.

  • Hands-on Experience:

  • DataMites emphasizes practical learning through real-world projects and case studies, providing students with hands-on experience in applying their skills.

  • Industry-Recognized Certification:

  • Upon completion of the training, participants receive globally recognized certifications from DataMites, validating their skills in data analytics.

  • Placement Support:

  • DataMites offers placement assistance to help students kick-start their careers in data analytics by providing guidance, interview preparation, and job references.

  • Flexible Learning Options:

  • DataMites provides flexible learning options, including both online and offline modes, to accommodate the diverse needs of learners.

  • Affordable Pricing:

  • DataMites offers competitive and affordable pricing for their data analytics courses, making them accessible to a wide range of individuals.

To attend data analytics training in Lucknow, it is generally beneficial to have a basic understanding of mathematics, statistics, and computer operations. Familiarity with programming languages like Python or R and knowledge of database management systems can also be advantageous.

The fee for the Data Analytics Course at DataMites in Lucknow may vary based on factors such as course duration, mode of delivery, and additional services. The cost of certified data analyst training in Lucknow can range from INR 28,178 to INR 76,000.

In Lucknow, the DataMites Certified Data Analytics Course is designed to span 4 months, with more than 200 learning hours. This timeframe allows for thorough training, practical exercises, and project-based learning.

The DataMites Certified Data Analyst Training in Lucknow covers a wide range of topics, including data preprocessing, data visualization, statistical analysis, predictive modeling, machine learning, data mining, and database management systems. The exact curriculum may vary based on the course level and specialization.

Flexi-Pass is a unique feature provided by DataMites that allows students to schedule their training sessions flexibly. With Flexi-Pass, learners can choose their preferred timing and attend the training at their convenience. This feature is particularly beneficial for working professionals and individuals with other commitments who wish to pursue data analytics training without disrupting their regular schedule.

DataMites offers multiple payment methods to facilitate the enrollment process. These options may include online payment through debit or credit cards, net banking, and other digital payment platforms. For specific information on the payment methods, it is recommended to visit the DataMites website or contact their admissions team.

Yes, DataMites provides support sessions to participants who require additional assistance or clarification on the topics covered in the Data Analytics training. These support sessions aim to ensure a thorough understanding of the subject matter and address any specific queries or challenges faced by participants.

By completing the Data Analytics training program at DataMites, you will earn highly esteemed certifications from IABAC, NASSCOM FutureSkills Prime, and JainX. These certifications hold global recognition and serve as tangible proof of your competence in the field of data analytics, enhancing your job market competitiveness.

Typically, DataMites may require participants to carry certain documents to the training session, such as a valid ID proof (e.g., Aadhaar card, passport, or driver's license) for verification purposes.

DataMites offers various payment options to facilitate the enrollment process. These options may include online payment through debit or credit cards, net banking, and other digital payment platforms. Additionally, DataMites may also provide the option for payment through offline modes like demand drafts or bank transfers. For specific information on the payment options, it is recommended to contact the DataMites admissions team or refer to their official website.

DataMites offers on-demand classroom training for Data Analytics in Lucknow. They provide interactive and instructor-led sessions, allowing participants to learn in a traditional classroom setting. This mode of training facilitates direct interaction with the faculty and fellow learners, creating an immersive learning environment.

The DataMites Certified Data Analyst Course in Lucknow is open to individuals from diverse backgrounds, including fresh graduates, working professionals, and anyone interested in pursuing a career in data analytics. There are no specific eligibility criteria, making it accessible to a wide range of learners.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

OTHER DATA ANALYTICS TRAINING CITIES IN INDIA

Global DATA ANALYTICS COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog