Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: DATA ANALYSIS FOUNDATION
• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain
MODULE 2: CLASSIFICATION OF ANALYTICS
• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics
MODULE 3: CRIP-DM Model
• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling, Evaluation, Deploying,Monitoring
MODULE 4: UNIVARIATE DATA ANALYSIS
• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.
MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS
• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot
MODULE 6: BI-VARIATE DATA ANALYSIS
• Scatter Plots
• Regression Analysis
• Correlation Coefficients
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
MODULE 2 : HARNESSING DATA
MODULE 3 : EXPLORATORY DATA ANALYSIS
MODULE 4 : HYPOTHESIS TESTING
MODULE 1: COMPARISION AND CORRELATION ANALYSIS
• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis
MODULE 2: VARIANCE AND FREQUENCY ANALYSIS
• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis
MODULE 3: RANKING ANALYSIS
• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis
MODULE 4: BREAK EVEN ANALYSIS
• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing
MODULE 5: PARETO (80/20 RULE) ANALSYSIS
• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis
MODULE 6: Time Series and Trend Analysis
• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
MODULE 7: DATA ANALYSIS BUSINESS REPORTING
• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
MODULE 1: DATA ANALYTICS FOUNDATION
• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity
MODULE 2: OPTIMIZATION MODELS
• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity
MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION
• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel
MODULE 4: DECISION MODELING
• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool
MODULE 4: ML ALGO: KNN
• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering
MODULE 6: ML ALGO: DECISION TREE
• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool
MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool
MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
Data Analytics involves the collection, organization, analysis, and interpretation of large datasets to uncover patterns, trends, and insights that can drive decision-making and improve business performance.
Studying Data Analytics offers benefits like improved decision-making, enhanced efficiency, competitive advantage, better customer understanding, and diverse career opportunities.
A career in Data Analytics is open to individuals from various educational backgrounds, including mathematics, statistics, computer science, engineering, economics, and business. Passion for data analysis, problem-solving, and critical thinking is also valuable.
Data Analytics is utilized in industries such as finance, healthcare, retail, manufacturing, telecommunications, energy, government, marketing, and entertainment.
Proficiency in programming languages like Python, R, or SQL, strong analytical and problem-solving skills, knowledge of statistics and data visualization, familiarity with databases, understanding of machine learning and predictive modeling, and effective communication skills are essential.
The scope of Data Analytics includes data mining, data visualization, predictive modeling, machine learning, and artificial intelligence.
Data Analytics offers career prospects in technology companies, consulting firms, finance, healthcare, e-commerce, government, and more. Job titles may include Data Analyst, Data Scientist, Business Intelligence Analyst, Data Engineer, Machine Learning Engineer, and Data Consultant.
The average salary for a Data Analyst in the the UK is £36,535 per annum. (Glassdoor)
The average salary for a Data Analyst in India is INR 6,00,000 per year. (Glassdoor)
The average salary for a Data Analyst in Canada is C$58,843 per year. (Payscale)
The average salary for a Data Analyst in the United States is USD 69,517 per year. (Glassdoor)
The average salary for a Data Analyst in Australia is AUD 85,000 per year. (Glassdoor)
The average salary for a Data Analyst in Germany is 46,328 EUR per annum. (Payscale)
The average salary for a Data Analyst in Switzerland is CHF 95,626 per year. (Glassdoor)
The average salary for a Data Analyst in UAE is AED 106,940 per year. (Payscale)
The average salary for a Data Analyst in South Africa is ZAR 286,090 per year. (Payscale.com)
The average salary for a Data Analyst in Saudi Arabia is SAR 95,960 per year. (Payscale.com)
The average data analyst salary in Panaji is ₹3,43,947 per annum according to Indeed.
The cost of a Data Analytics Course in Panaji can range between 40,000 and 80,000 INR, depending on factors such as the institute, course duration, curriculum, and additional features offered.
While a mathematics background can be beneficial, it is not always a mandatory requirement. Data Analytics requires a combination of skills from various disciplines, and individuals with strong problem-solving and critical thinking abilities can pursue a career in the field.
The difficulty of a Data Analytics course can vary based on the curriculum, topics covered, and individual aptitude. With dedication, practice, and guidance, it is possible to grasp the concepts and excel in the field.
A bachelor's degree in mathematics, statistics, computer science, engineering, economics, or business is typically required. However, requirements may vary based on the job and company, and advanced degrees or certifications can be beneficial.
DataMites is a recommended institute for studying data analytics. They offer comprehensive courses, experienced faculty, practical experience, and placement assistance. It is advisable to explore their offerings and consider them as a preferred institute for learning data analytics.
Yes, a non-science student can learn data analytics. While a background in mathematics, statistics, or computer science can be advantageous, individuals from various educational backgrounds can acquire the necessary skills through relevant training and courses.
A graduation degree is often required for a data analyst position. Most employers prefer candidates with at least a bachelor's degree in a relevant field such as mathematics, statistics, computer science, economics, or business. However, some organizations may consider candidates with equivalent work experience or relevant certifications.
Yes, it is possible to enter the field of data analytics without prior experience. Many organizations offer entry-level positions or internships for individuals who are new to the field. Additionally, acquiring relevant certifications and completing data analytics projects or internships during your education can help you gain practical experience and increase your chances of starting a career in data analytics.
Yes, freshers can pursue a career as a data analyst. Many companies offer entry-level positions for recent graduates or individuals with limited work experience. By acquiring the necessary skills, completing internships or relevant projects, and demonstrating a strong aptitude for data analysis, freshers can establish themselves in the field of data analytics.
While having some prior experience or relevant internships can be beneficial, there are opportunities for individuals to secure data analyst positions without prior work experience. Entry-level roles or internships specifically designed for individuals with limited experience are available in the industry. Building a strong portfolio of data analysis projects and showcasing your skills and knowledge can also improve your chances of getting a data analyst job with no prior experience.
DataMites is a reputable institute renowned for its high-quality data analytics courses. Opting for DataMites in Panaji offers access to experienced trainers, a comprehensive curriculum, practical projects, and placement support. The institute provides flexible learning schedules, convenient location, and a supportive learning community, making it an excellent choice for data analytics training in Panaji.
The prerequisites for data analytics training in Panaji may vary depending on the specific course. However, having a basic understanding of mathematics, statistics, and computer applications can be beneficial for grasping the concepts effectively.
DataMites provides several compelling reasons to consider their Certified Data Analyst Training in Panaji. These include experienced faculty members, a comprehensive course curriculum, hands-on projects with real-world data, internship opportunities, placement assistance, flexible learning options, and a supportive learning community. DataMites also offers globally recognized certifications that enhance your resume.
The DataMites Certified Data Analyst Course in Panaji is open to individuals from diverse backgrounds, including graduates, working professionals, business analysts, IT professionals, and anyone interested in building a career in data analytics.
Depending on the course duration, mode of delivery, and additional services offered, the Data Analytics Course Fee at DataMites in Panaji can vary. Typically, the cost of certified data analyst training in Panaji falls between INR 28,178 and INR 76,000.
The DataMites Certified Data Analytics Course in Panaji has a duration of 6 months, comprising over 200 learning hours. This duration allows for comprehensive training, practical exercises, and project work.
The DataMites Certified Data Analyst Training in Panaji covers a wide range of topics, including data analysis techniques, statistical analysis, data visualization, data mining, machine learning, predictive analytics, and data-driven decision making. For a detailed curriculum, you can refer to DataMites' website or consult with their team during the counseling session.
Flexi-Pass in DataMites is a unique feature that provides learners with access to the course material and resources for 365 days from the date of enrollment. This allows learners to study at their own pace, review the content, and revisit the course material even after completing the training.
DataMites offers various payment methods to accommodate learners. These may include online payment options such as debit or credit cards, net banking, UPI, or other online payment gateways. They may also accept payment through bank transfers or demand drafts. DataMites will provide specific payment method details during the enrollment process.
Upon the successful completion of the Data Analytics training at DataMites, you will receive prestigious certifications from IABAC, NASSCOM FutureSkills Prime, and JainX. These internationally recognized certifications validate your expertise in data analytics, enhancing your career prospects and demonstrating your proficiency to potential employers.
Yes, DataMites provides support sessions for learners who require a deeper understanding of specific topics. You can reach out to their support team or faculty to schedule additional support sessions or seek clarification on any doubts or concepts you would like to explore further.
The specific documents required for the training session may vary depending on the institute's policies. However, it is advisable to carry a government-issued photo ID proof for identification purposes. It is recommended to contact DataMites directly to inquire about any specific documents or requirements for the training session.
DataMites offers various payment options for enrolling in their courses. These may include online payment methods such as debit or credit cards, net banking, UPI, or other online payment gateways. They may also accept payment through bank transfers or demand drafts. DataMites will provide specific payment options during the enrollment process.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.