CERTIFIED DATA ANALYST CERTIFICATION AUTHORITIES

COURSE FEATURES

DATA ANALYTICS LEAD MENTORS

DATA ANALYST COURSE FEES IN COLORADO SPRINGS

Live Virtual

Instructor Led Live Online

2,060
1,167

  • IABAC® Certification
  • 6-Month | 200+ Learning Hours
  • 20 HOURS LEARNING A WEEK
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

1,030
665

  • Self Learning + Live Mentoring
  • IABAC® Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA ANALYST ONLINE CLASSES IN COLORADO SPRINGS

BEST DATA ANALYTICS CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA ANALYST COURSE

Why DataMites Infographic

SYLLABUS OF DATA ANALYST CERTIFICATION IN COLORADO SPRINGS

MODULE 1: DATA ANALYSIS FOUNDATION

• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain

MODULE 2: CLASSIFICATION OF ANALYTICS

• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics

MODULE 3: CRIP-DM Model

• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
Modeling, Evaluation, Deploying,Monitoring

MODULE 4: UNIVARIATE DATA ANALYSIS

• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.

MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS

• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot

MODULE 6: BI-VARIATE DATA ANALYSIS

• Scatter Plots
• Regression Analysis
• Correlation Coefficients

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES

• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

  • Introduction to Statistics
  • Descriptive And Inferential Statistics
  • Basic Terms Of Statistics
  • Types Of Data

MODULE 2 : HARNESSING DATA 

  • Random Sampling
  • Sampling With Replacement And Without Replacement
  • Cochran's Minimum Sample Size
  • Types of Sampling
  • Simple Random Sampling
  • Stratified Random Sampling
  • Cluster Random Sampling
  • Systematic Random Sampling
  • Multi stage Sampling
  • Sampling Error
  • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

  • Exploratory Data Analysis Introduction
  • Measures Of Central Tendencies: Mean, Median And Mode
  • Measures Of Central Tendencies: Range, Variance And Standard Deviation
  • Data Distribution Plot: Histogram
  • Normal Distribution & Properties
  • Z Value / Standard Value
  • Empherical Rule  and Outliers
  • Central Limit Theorem
  • Normality Testing
  • Skewness & Kurtosis
  • Measures Of Distance: Euclidean, Manhattan And MinkowskiDistance
  • Covariance & Correlation

MODULE 4 : HYPOTHESIS TESTING 

  • Hypothesis Testing Introduction
  • P- Value, Critical Region
  • Types of Hypothesis Testing
  • Hypothesis Testing Errors : Type I And Type Ii
  • Two Sample Independent T-test
  • Two Sample Relation T-test
  • One Way Anova Test
  • Application of Hypothesis testing

MODULE 1: COMPARISION AND CORRELATION ANALYSIS

• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis

MODULE 2: VARIANCE AND FREQUENCY ANALYSIS

• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis

MODULE 3: RANKING ANALYSIS

• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis

MODULE 4: BREAK EVEN ANALYSIS

• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing

MODULE 5: PARETO (80/20 RULE) ANALSYSIS

• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis

MODULE 6: Time Series and Trend Analysis

• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis

MODULE 7: DATA ANALYSIS BUSINESS REPORTING

• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements

MODULE 1: DATA ANALYTICS FOUNDATION

• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity

MODULE 2: OPTIMIZATION MODELS

• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity

MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION

• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel

MODULE 4: DECISION MODELING

• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer

MODULE 1: MACHINE LEARNING INTRODUCTION

• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSSION

• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool

MODULE 3: ML ALGO: LOGISTIC REGRESSION

• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool

MODULE 4: ML ALGO: KNN

• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool

MODULE 5: ML ALGO: K MEANS CLUSTERING

• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering

MODULE 6: ML ALGO: DECISION TREE

• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool

MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool

MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)

• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool

MODULE 1: DATABASE INTRODUCTION

• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)

MODULE 2: SQL BASICS

• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS

• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table

MODULE 5: SQL JOINS

• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES

• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries

MODULE 7: DOCUMENT DB/NO-SQL DB

• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS

• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies

MODULE 2: POWER-BI BASICS

• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION

MODULE 3: DATA TRANSFORMATION TECHNIQUES

• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES

• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model

OFFERED DATA ANALYST COURSES IN COLORADO SPRINGS

DATA ANALYST TRAINING COURSE REVIEWS

ABOUT DATAMITES DATA ANALYST TRAINING IN COLORADO SPRINGS

The global data analytics outsourcing market size was valued at USD 3.53 billion in 2020 and is expected to grow at a compound annual growth rate (CAGR) of 21.6% from 2021 to 2028. Data analytics careers offer high job satisfaction and competitive salaries, as well as opportunities for growth and advancement in a rapidly evolving field.

Datamites Certified Data Analyst Training in Colorado Springs is designed to provide students with an all-inclusive data analytics training that includes vital concepts and tools. The course offers IABAC certification, providing aspiring data analysts with global recognition and credibility.

Colorado Springs, Colorado has a rising demand for data analytics professionals due to the city's growing technology and cybersecurity industries. With companies such as Lockheed Martin, Hewlett Packard Enterprise, and Booz Allen Hamilton having a significant presence in the area, there is a need for skilled data analysts to help these businesses analyze and interpret large sets of data. The city also has several universities and colleges that offer data analytics programs, providing a pipeline of talent to meet the increasing demand for data professionals in the region.

Data analytics is a rapidly growing field with endless opportunities for career advancement and salary growth. Start your journey in this exciting field with Datamites Certified Data Analyst Course in Colorado Springs.

Along with the data analyst courses, DataMites also provides python training, deep learning, data engineer, data analytics, r programming, mlops, artificial intelligence, machine learning and data science courses in Colorado Springs.

ABOUT DATA ANALYST COURSE IN COLORADO SPRINGS

Data analytics involves using various techniques to analyze and interpret data, with the goal of gaining insights that can be used to drive decision-making.

A data analyst is responsible for collecting and processing data, performing statistical analyses, creating visualizations, and communicating insights to stakeholders to inform data-driven decisions.

A degree in a related field such as statistics, mathematics, or computer science can be helpful, as well as experience in data analysis and programming.

A certified data analytics course in Colorado Springs can cost anywhere between 600 USD to 1600 USD, depending on the mode of training opted for.

DataMites is a first-rate institution in Colorado Springs that delivers high-quality data analytics training. Their programs and courses are designed to give students practical skills and experience to succeed in the data analytics industry.

Without a doubt, data analysts are currently in high demand in the job market. As the volume and complexity of data continue to grow, businesses need skilled analysts who can help them make sense of this data and extract valuable insights.

A highly recommended course for anyone interested in data analytics is the Certified Data Analyst Course offered by DataMites in Colorado Springs. This program provides a solid foundation in essential data analytics skills like programming languages, machine learning, statistical analysis, and data visualization.

According to INDEED.com, the average salary for a data analyst in Colorado Springs is 94,341 USD a year. 

The scope of data analytics in Colorado Springs is growing, with an increasing number of businesses and organizations recognizing the importance of data-driven decision-making. This has resulted in a rising demand for skilled data analysts who can effectively analyze and interpret large data sets to provide insights that inform business decisions. As a result, individuals with expertise in data analytics have numerous opportunities in Colorado Springs.

The top job roles in data analytics include data analyst, business analyst, data scientist, data engineer, data architect, and data visualization expert. Data analysts collect and interpret data, while business analysts analyze market trends and provide strategic insights to help companies grow. Data scientists use statistical models and algorithms to analyze data and provide insights, while data engineers design and develop data systems. Data architects manage an organization's data infrastructure, and data visualization experts create visual representations of data to help businesses make informed decisions.

FAQ’S OF DATA ANALYST COURSE IN COLORADO SPRINGS

Compared to other data analytics courses, DataMites' data analytics course offers a complete curriculum, seasoned faculty, experiential training with real-world datasets, adaptable learning modalities, reasonable fees, internships, and a globally recognized certification that is approved by IABAC.

Absolutely, you can request additional support from DataMites instructors at any time if you need help understanding a course topic better.

The DataMites Certified Data Analytics Course in Colorado Springs lasts for six months and includes 20 hours of instruction per week. Regular classes are held, and students receive continuous mentorship throughout the course.

There are no specific eligibility criteria for the DataMites Certified Data Analyst Program in Colorado Springs, and anyone interested in learning data analytics can apply.

DataMites offers multiple payment modes, including cash, checks, debit cards, credit cards (Visa, Mastercard, and American Express), PayPal, and net banking, for the Certified Data Analytics Course in Colorado Springs.

DataMites' trainers for the Certified Data Analyst Course are selected based on a rigorous screening process that includes their qualifications, work experience, and teaching abilities.

With the Flexi-Pass feature, students can access the recorded classes at any time and can also join the live classes when it is suitable for them.

Yes, upon successful completion of the Data Analytics Training program in Colorado Springs, students will be awarded IABAC® certification by DataMites.

At DataMites in Colorado Springs, the Certified Data Analyst Training fees range from USD 552 to USD 1,430.

You will need to bring a valid photo identification proof such as a National ID card or a Driving license. These documents are required for issuing the participation certificate and booking the certification exam if necessary.

Yes, a complimentary demo class will be provided to help you understand the format and content of the training. This will give you a good idea of what to expect from the training program.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

OTHER DATA ANALYST TRAINING CITIES IN USA

Global DATA ANALYTICS COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog