Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1 : ARTIFICIAL INTELLIGENCE OVERVIEW
• Evolution Of Human Intelligence
• What Is Artificial Intelligence?
• History Of Artificial Intelligence
• Why Artificial Intelligence Now?
• Areas Of Artificial Intelligence
• AI Vs Data Science Vs Machine Learning
MODULE 2 : DEEP LEARNING INTRODUCTION
• Deep Neural Network
• Machine Learning vs Deep Learning
• Feature Learning in Deep Networks
• Applications of Deep Learning Networks
MODULE3 : TENSORFLOW FOUNDATION
• TensorFlow Structure and Modules
• Hands-On:ML modeling with TensorFlow
MODULE 4 : COMPUTER VISION INTRODUCTION
• Image Basics
• Convolution Neural Network (CNN)
• Image Classification with CNN
• Hands-On: Cat vs Dogs Classification with CNN Network
MODULE 5 : NATURAL LANGUAGE PROCESSING (NLP)
• NLP Introduction
• Bag of Words Models
• Word Embedding
• Hands-On:BERT Algorithm
MODULE 6 : AI ETHICAL ISSUES AND CONCERNS
• Issues And Concerns Around Ai
• Ai And Ethical Concerns
• Ai And Bias
• Ai:Ethics, Bias, And Trust
MODULE 1 : PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2 : PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3 : PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4 : PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
• Introduction to Statistics
• Descriptive And Inferential Statistics
• Basic Terms Of Statistics
• Types Of Data
MODULE 2 : HARNESSING DATA
• Random Sampling
• Sampling With Replacement And Without Replacement
• Cochran's Minimum Sample Size
• Types of Sampling
• Simple Random Sampling
• Stratified Random Sampling
• Cluster Random Sampling
• Systematic Random Sampling
• Multi stage Sampling
• Sampling Error
• Methods Of Collecting Data
MODULE 3 : EXPLORATORY DATA ANALYSIS
• Exploratory Data Analysis Introduction
• Measures Of Central Tendencies: Mean,Median And Mode
• Measures Of Central Tendencies: Range, Variance And Standard Deviation
• Data Distribution Plot: Histogram
• Normal Distribution & Properties
• Z Value / Standard Value
• Empherical Rule and Outliers
• Central Limit Theorem
• Normality Testing
• Skewness & Kurtosis
• Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
• Covariance & Correlation
MODULE 4 : HYPOTHESIS TESTING
• Hypothesis Testing Introduction
• P- Value, Critical Region
• Types of Hypothesis Testing
• Hypothesis Testing Errors : Type I And Type II
• Two Sample Independent T-test
• Two Sample Relation T-test
• One Way Anova Test
• Application of Hypothesis testing
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: PYTHON NUMPY PACKAGE
• Introduction to Numpy Package
• Array as Data Structure
• Core Numpy functions
• Matrix Operations, Broadcasting in Arrays
MODULE 3: PYTHON PANDAS PACKAGE
• Introduction to Pandas package
• Series in Pandas
• Data Frame in Pandas
• File Reading in Pandas
• Data munging with Pandas
MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib
• Visualization Packages (Matplotlib)
• Components Of A Plot, Sub-Plots
• Basic Plots: Line, Bar, Pie, Scatter
MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN
• Seaborn: Basic Plot
• Advanced Python Data Visualizations
MODULE 6: ML ALGO: LINEAR REGRESSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Modeling and Evaluation in Python
MODULE 7: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Modeling and Evaluation in Python
MODULE 8: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Modeling in Python
MODULE 9: ML ALGO: KNN
• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Modeling and Evaluation in Python
MODULE 1: FEATURE ENGINEERING
• Introduction to Feature Engineering
• Feature Engineering Techniques: Encoding, Scaling, Data Transformation
• Handling Missing values, handling outliers
• Creation of Pipeline
• Use case for feature engineering
MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python
MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)
• Building Blocks Of PCA
• How it works: Finding Principal Components
• Modeling PCA in Python
MODULE 4: ML ALGO: DECISION TREE
• Introduction to Decision Tree & Random Forest
• How it works
• Modeling and Evaluation in Python
MODULE 5: ENSEMBLE TECHNIQUES - BAGGING
• Introduction to Ensemble technique
• Bagging and How it works
• Modeling and Evaluation in Python
MODULE 6: ML ALGO: NAÏVE BAYES
• Introduction to Naive Bayes
• How it works: Bayes' Theorem
• Naive Bayes For Text Classification
• Modeling and Evaluation in Python
MODULE 7: GRADIENT BOOSTING, XGBOOST
• Introduction to Boosting and XGBoost
• How it works?
• Modeling and Evaluation of in Python
MODULE 1: TIME SERIES FORECASTING - ARIMA
• What is Time Series?
• Trend, Seasonality, cyclical and random
• Stationarity of Time Series
• Autoregressive Model (AR)
• Moving Average Model (MA)
• ARIMA Model
• Autocorrelation and AIC
• Time Series Analysis in Python
MODULE 2: SENTIMENT ANALYSIS
• Introduction to Sentiment Analysis
• NLTK Package
• Case study: Sentiment Analysis on Movie Reviews
MODULE 3: REGULAR EXPRESSIONS WITH PYTHON
• Regex Introduction
• Regex codes
• Text extraction with Python Regex
MODULE 4: ML MODEL DEPLOYMENT WITH FLASK
• Introduction to Flask
• URL and App routing
• Flask application – ML Model deployment
MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL
• MS Excel core Functions
• Advanced Functions (VLOOKUP, INDIRECT..)
• Linear Regression with EXCEL
• Data Table
• Goal Seek Analysis
• Pivot Table
• Solving Data Equation with EXCEL
MODULE 6: AWS CLOUD FOR DATA SCIENCE
• Introduction of cloud
• Difference between GCC, Azure,AWS
• AWS Service ( EC2 instance)
MODULE 7: AZURE FOR DATA SCIENCE
• Introduction to AZURE ML studio
• Data Pipeline
• ML modeling with Azure
MODULE 8: INTRODUCTION TO DEEP LEARNING
• Introduction to Artificial Neural Network, Architecture
• Artificial Neural Network in Python
• Introduction to Convolutional Neural Network, Architecture
• Convolutional Neural Network in Python
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• Relational Database Management System
• CRUD operations
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join
• Windows functions: Over, Partition , Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
MODULE 1: GIT INTRODUCTION
• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture
MODULE 2: GIT REPOSITORY and GitHub
• Git Repo Introduction
• Create New Repo with Init command
• Git Essentials: Copy & User Setup
• Mastering Git and GitHub
MODULE 3: COMMITS, PULL, FETCH AND PUSH
• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo
MODULE 4: TAGGING, BRANCHING AND MERGING
• Organize code with branches
• Checkout branch
• Merge branches
• Editing Commits
• Commit command Amend flag
• Git reset and revert
MODULE 5: GIT WITH GITHUB AND BITBUCKET
• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
MODULE 1: BIG DATA INTRODUCTION
MODULE 2: HDFS AND MAP REDUCE
MODULE 3: PYSPARK FOUNDATION
MODULE 4: SPARK SQL and HADOOP HIVE
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3 : DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4 : CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
MODULE 1: NEURAL NETWORKS
• Structure of neural networks
• Neural network - core concepts(Weight initialization)
• Neural network - core concepts(Optimizer)
• Neural network - core concepts(Need of activation)
• Neural network - core concepts(MSE & RMSE)
• Feed forward algorithm
• Backpropagation
MODULE 2: IMPLEMENTING DEEP NEURAL NETWORKS
• Introduction to neural networks with tf2.X
• Simple deep learning model in Keras (tf2.X)
• Building neural network model in TF2.0 for MNIST dataset
MODULE 3: DEEP COMPUTER VISION - IMAGE RECOGNITION
• Convolutional neural networks (CNNs)
• CNNs with Keras-part1
• CNNs with Keras-part2
• Transfer learning in CNN
• Flowers dataset with tf2.X(part-1)
• Flowers dataset with tf2.X(part-2)
• Examining x-ray with CNN model
MODULE 4 : DEEP COMPUTER VISION - OBJECT DETECTION
• What is Object detection
• Methods of Object Detections
• Metrics of Object detection
• Bounding Box regression
• labelimg
• RCNN
• Fast RCNN
• Faster RCNN
• SSD
• YOLO Implementation
• Object detection using cv2
MODULE 5: RECURRENT NEURAL NETWORK
• RNN introduction
• Sequences with RNNs
• Long short-term memory networks(part 1)
• Long short-term memory networks(part 2)
• Bi-directional RNN and LSTM
• Examples of RNN applications
MODULE 6: NATURAL LANGUAGE PROCESSING (NLP)
• Introduction to Natural language processing
• Working with Text file
• Working with pdf file
• Introduction to regex
• Regex part 1
• Regex part 2
• Word Embedding
• RNN model creation
• Transformers and BERT
• Introduction to GPT (Generative Pre-trained Transformer)
• State of art NLP and projects
MODULE 7: PROMPT ENGINEERING
• Introduction to Prompt Engineering
• Understanding the Role of Prompts in AI Systems
• Design Principles for Effective Prompts
• Techniques for Generating and Optimizing Prompts
• Applications of Prompt Engineering in Natural Language Processing
MODULE 8: REINFORCEMENT LEARNING
• Markov decision process
• Fundamental equations in RL
• Model-based method
• Dynamic programming model free methods
MODULE 9: DEEP REINFORCEMENT LEARNING
• Architectures of deep Q learning
• Deep Q learning
• Reinforcement Learning Projects with OpenAI Gym
MODULE 10: Gen AI
• Gan introduction, Core Concepts, and Applications
• Core concepts of GAN
• GAN applications
• Building GAN model with TensorFlow 2.X
• Introduction to GPT (Generative Pre-trained Transformer)
• Building a Question answer bot with the models on Hugging Face
MODULE 11: Gen AI
• Introduction to Autoencoder
• Basic Structure and Components of Autoencoders
• Types of Autoencoders: Vanilla, Denoising, Variational, Sparse, and Convolutional Autoencoders
• Training Autoencoders: Loss Functions, Optimization Techniques
• Applications of Autoencoders: Dimensionality Reduction, Anomaly Detection, Image
Artificial Intelligence, commonly known as AI, holds great significance in the modern world. It involves the development of intelligent systems and algorithms that can mimic human intelligence and perform tasks with remarkable precision. AI has the potential to revolutionize various industries and enhance efficiency, productivity, and decision-making processes.
Artificial Intelligence is extensively employed in a wide range of sectors and domains. Some common areas where AI finds application include healthcare, finance, manufacturing, transportation, cybersecurity, customer service, marketing, and robotics. Its versatility allows it to address complex challenges and deliver innovative solutions across multiple industries.
Artificial Intelligence has become an integral part of our everyday lives. Examples include virtual voice assistants like Amazon's Alexa or Apple's Siri, personalized recommendations on streaming platforms like Netflix or Spotify, facial recognition systems in smartphones, autonomous vehicles, AI-powered chatbots used in customer support, and smart home devices that adapt to user preferences. These applications showcase the transformative impact of AI on our daily experiences.
To acquire expertise in Artificial Intelligence in Agartala, certain prerequisites can be beneficial. A foundational understanding of programming concepts, proficiency in mathematics and statistics, familiarity with data structures and algorithms, and a strong analytical mindset are essential. Additionally, curiosity, dedication to continuous learning, and problem-solving skills are advantageous for effectively delving into the field.
A career in Artificial Intelligence often demands a solid educational background. A bachelor's or master's degree in computer science, data science, or a related field is typically preferred by employers. Courses focusing on AI, machine learning, statistics, and programming languages such as Python or R are valuable for gaining the necessary knowledge and skills.
The future prospects for Artificial Intelligence in the job market are highly promising. As AI continues to advance and permeate various industries, the demand for skilled professionals is expected to soar. Job opportunities in AI-related roles, such as AI engineers, data scientists, and AI consultants, are projected to witness significant growth, offering exciting career paths and attractive remuneration.
Transitioning into a career in Artificial Intelligence from a different field is achievable with strategic steps. These may include acquiring relevant knowledge and skills through online courses, boot camps, or specialized AI programs, building a strong portfolio showcasing AI projects, participating in AI competitions and hackathons, networking with professionals in the field, and pursuing internships or freelance projects to gain practical experience.
While Artificial Intelligence is a broader field encompassing the development of intelligent machines, Machine Learning is a subset of AI. Machine Learning focuses on algorithms and models that enable systems to learn from data and improve their performance over time. In essence, Machine Learning is an essential component of Artificial Intelligence, as it enables machines to analyze and interpret data without explicit programming.
The field of Artificial Intelligence offers a diverse range of job roles. Some common job titles include AI engineer, machine learning engineer, data scientist, AI researcher, AI consultant, AI project manager, and AI ethicist. These roles involve responsibilities such as developing AI models, analyzing data, conducting research, implementing AI solutions, and addressing ethical considerations in AI development and deployment.
Undoubtedly, a career in Artificial Intelligence holds immense promise for the future. The continuous advancement of AI technologies, the increasing integration of AI in various industries, and the growing demand for AI professionals indicate a thriving job market. AI specialists have the opportunity to shape the future, solve complex problems, and contribute to groundbreaking innovations that positively impact society.
To initiate a career in Artificial Intelligence, individuals can follow a systematic approach. It includes gaining a strong foundation in computer science, mathematics, and statistics, acquiring in-depth knowledge of AI concepts and algorithms through relevant courses or online resources, developing practical skills through hands-on projects, collaborating with peers in the field, and staying updated with the latest advancements through research papers, conferences, and AI communities. Internships and entry-level positions can provide valuable industry experience and pave the way for a successful career in AI.
Individuals can gain knowledge in Artificial Intelligence through various methods, including self-study using online resources, textbooks, research papers, and tutorials. They can also enroll in AI courses and training programs, pursue degrees or diplomas in AI or related fields, attend workshops and conferences, and engage in practical projects and competitions to gain hands-on experience.
The duration of the Artificial Intelligence course offered by DataMites in Agartala can vary depending on the specific course chosen. The course offers flexible durations ranging from one month to one year, providing options that accommodate different schedules and preferences. DataMites conducts training sessions on both weekdays and weekends, allowing participants to select a schedule that suits their availability and learning needs.
DataMites offers a range of certifications in Artificial Intelligence, including certifications for AI Engineers, Certified NLP Experts, AI Experts, AI Foundations, and AI for Managers.
DataMites is the preferred choice for online Artificial Intelligence training in Agartala for several reasons. These include having experienced trainers who are industry professionals, offering a comprehensive course curriculum that covers various AI topics, providing hands-on learning opportunities through practical projects, offering flexible batch options and schedules, providing placement assistance, and allowing participants to obtain certifications upon completing the training.
The Artificial Intelligence for Managers Course offered by DataMites in Agartala covers essential topics such as AI basics, machine learning, deep learning, natural language processing, computer vision, AI implementation challenges, ethical considerations, and AI project management. This course equips managers with the necessary knowledge to make informed decisions about AI adoption, implementation, and leveraging AI technologies for business growth.
DataMites' AI Foundation Course in Agartala provides a comprehensive introduction to AI and covers fundamental subjects, including AI basics, machine learning, and deep learning. The course content encompasses an overview of AI, supervised and unsupervised learning, neural networks, deep learning algorithms, model evaluation, and deployment techniques, establishing a strong foundation in AI concepts and techniques.
The fee for DataMites' Artificial Intelligence Training program in Agartala can vary depending on the specific course and duration chosen. Generally, the fee ranges from INR 60,795 to INR 154,000, offering flexibility for participants to choose a program that suits their requirements.
DataMites provides both online and classroom training options for Artificial Intelligence in Agartala, giving participants the flexibility to choose the mode of training that best suits their preferences and needs.
The Flexi-Pass feature offered by DataMites in Agartala allows participants to attend training sessions at their convenience. It offers flexibility in scheduling by providing multiple batch options, enabling individuals to balance their learning with other commitments and choose classes based on their availability and preference.
The AI Engineer Course offered by DataMites in Agartala aims to equip individuals with the necessary skills and knowledge to become proficient AI engineers. The course covers various aspects of AI, including machine learning, deep learning, natural language processing, computer vision, and AI deployment techniques. It prepares participants to build and deploy AI models in real-world scenarios.
Yes, DataMites may offer the option to attend a demo class before enrolling in the Artificial Intelligence course in Agartala. This allows individuals to experience the training approach, course content, and teaching style before making a decision.
Yes, participants who complete a training program with DataMites in Agartala can obtain a Course Completion Certificate. This certificate acknowledges their successful completion of the program and serves as a valuable addition to their professional profile.
The average salary for an Artificial Intelligence Engineer in Agartala can vary depending on factors such as experience, skills, and the specific organization. Salaries in the field of Artificial Intelligence are generally competitive, with a range of entry-level positions to higher-paying roles based on expertise and experience. According to AmbitionBox, the average annual salary for AI Engineers in India is ?7.0 Lakhs, with a salary range typically spanning from ?3.0 Lakhs to ?20.0 Lakhs.
Yes, DataMites provides Artificial Intelligence Courses in Agartala that include placement assistance. They support participants in connecting with job opportunities in the field of Artificial Intelligence through resume building, interview preparation, and job placement guidance.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.