CERTIFIED DATA ANALYST CERTIFICATION AUTHORITIES

COURSE FEATURES

DATA ANALYTICS LEAD MENTORS

DATA ANALYST COURSE FEES IN COLUMBUS

Live Virtual

Instructor Led Live Online

2,060
1,454

  • IABAC® Certification
  • 6-Month | 200+ Learning Hours
  • 20 HOURS LEARNING A WEEK
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

1,030
828

  • Self Learning + Live Mentoring
  • IABAC® Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Corporate Training

Customize Your Training


  • Instructor-Led & Self-Paced training
  • Customized Learning Options
  • Industry Expert Trainers
  • Case Study Approach
  • Enterprise Grade Learning
  • 24*7 Cloud Lab

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA ANALYST ONLINE CLASSES IN COLUMBUS

BEST DATA ANALYTICS CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA ANALYST COURSE

Why DataMites Infographic

SYLLABUS OF DATA ANALYST CERTIFICATION IN COLUMBUS

MODULE 1: DATA ANALYSIS FOUNDATION

• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain

MODULE 2: CLASSIFICATION OF ANALYTICS

• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics

MODULE 3: CRIP-DM Model

• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
Modeling, Evaluation, Deploying,Monitoring

MODULE 4: UNIVARIATE DATA ANALYSIS

• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.

MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS

• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot

MODULE 6: BI-VARIATE DATA ANALYSIS

• Scatter Plots
• Regression Analysis
• Correlation Coefficients

MODULE 1: PYTHON BASICS

• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS

• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES

• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS

• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

  • Introduction to Statistics
  • Descriptive And Inferential Statistics
  • Basic Terms Of Statistics
  • Types Of Data

MODULE 2 : HARNESSING DATA 

  • Random Sampling
  • Sampling With Replacement And Without Replacement
  • Cochran's Minimum Sample Size
  • Types of Sampling
  • Simple Random Sampling
  • Stratified Random Sampling
  • Cluster Random Sampling
  • Systematic Random Sampling
  • Multi stage Sampling
  • Sampling Error
  • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

  • Exploratory Data Analysis Introduction
  • Measures Of Central Tendencies: Mean, Median And Mode
  • Measures Of Central Tendencies: Range, Variance And Standard Deviation
  • Data Distribution Plot: Histogram
  • Normal Distribution & Properties
  • Z Value / Standard Value
  • Empherical Rule  and Outliers
  • Central Limit Theorem
  • Normality Testing
  • Skewness & Kurtosis
  • Measures Of Distance: Euclidean, Manhattan And MinkowskiDistance
  • Covariance & Correlation

MODULE 4 : HYPOTHESIS TESTING 

  • Hypothesis Testing Introduction
  • P- Value, Critical Region
  • Types of Hypothesis Testing
  • Hypothesis Testing Errors : Type I And Type Ii
  • Two Sample Independent T-test
  • Two Sample Relation T-test
  • One Way Anova Test
  • Application of Hypothesis testing

MODULE 1: COMPARISION AND CORRELATION ANALYSIS

• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis

MODULE 2: VARIANCE AND FREQUENCY ANALYSIS

• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis

MODULE 3: RANKING ANALYSIS

• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis

MODULE 4: BREAK EVEN ANALYSIS

• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing

MODULE 5: PARETO (80/20 RULE) ANALSYSIS

• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis

MODULE 6: Time Series and Trend Analysis

• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis

MODULE 7: DATA ANALYSIS BUSINESS REPORTING

• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements

MODULE 1: DATA ANALYTICS FOUNDATION

• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity

MODULE 2: OPTIMIZATION MODELS

• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity

MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION

• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel

MODULE 4: DECISION MODELING

• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer

MODULE 1: MACHINE LEARNING INTRODUCTION

• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised

MODULE 2: ML ALGO: LINEAR REGRESSSION

• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool

MODULE 3: ML ALGO: LOGISTIC REGRESSION

• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool

MODULE 4: ML ALGO: KNN

• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool

MODULE 5: ML ALGO: K MEANS CLUSTERING

• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering

MODULE 6: ML ALGO: DECISION TREE

• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool

MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool

MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)

• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool

MODULE 1: DATABASE INTRODUCTION

• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)

MODULE 2: SQL BASICS

• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS

• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table

MODULE 5: SQL JOINS

• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES

• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries

MODULE 7: DOCUMENT DB/NO-SQL DB

• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management

MODULE 1: BIG DATA INTRODUCTION

• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE

• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION

• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE

• Introducing Spark SQL
• Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS

• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies

MODULE 2: POWER-BI BASICS

• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION

MODULE 3: DATA TRANSFORMATION TECHNIQUES

• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES

• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model

OFFERED DATA ANALYST COURSES IN COLUMBUS

DATA ANALYST TRAINING COURSE REVIEWS

ABOUT DATAMITES DATA ANALYST TRAINING IN COLUMBUS

The global big data market size is expected to reach USD 103.1 billion by 2027, growing at a CAGR of 10.6% from 2020 to 2027. With the explosive growth of big data and advancements in technology, data analytics careers are booming as professionals with the right skills and knowledge are needed to help organizations make sense of vast amounts of data.

The DataMites Certified Data Analyst Courses in Columbus offers students a comprehensive data analytics training that encompasses all essential concepts and tools. With the added advantage of an IABAC certification, the program guarantees international recognition for aspiring data analysts.

Columbus, Ohio has a strong demand for data analytics professionals due to the city's expanding finance, insurance, and technology sectors. With major companies such as Nationwide, JPMorgan Chase, and Huntington Bancshares headquartered in the city, as well as a thriving startup community, there is a need for skilled data analysts to help these businesses make data-driven decisions. The city is also home to several universities and colleges that offer data analytics programs, providing a pipeline of talent to meet the growing demand for data professionals in the region.

With a data analytics career, you can help companies make informed decisions and drive business growth. Enroll in DataMites Certified Data Analyst Course in Columbus to gain expertise in data analysis tools and techniques.

Along with the data analyst courses, DataMites also provides python training, deep learning, data engineer, data analytics, r programming, mlops, artificial intelligence, machine learning and data science courses in Columbus.

ABOUT DATA ANALYST COURSE IN COLUMBUS

Data analytics is the practice of analyzing data to extract insights and identify trends, with the goal of informing decision-making.

A data analyst works with large datasets, cleans and processes the data, performs statistical analyses, and creates reports and visualizations to communicate insights to stakeholders.

Skills in programming languages like Python and SQL, knowledge of statistics and data analysis techniques, experience with data visualization tools, and the ability to communicate complex ideas to non-technical stakeholders are all important skills for a career in data analytics.

A certified data analytics course in Columbus can cost anywhere between 600 USD to 1600 USD, depending on the mode of training opted for.

If you're looking for exceptional data analytics training, look no further than DataMites in Columbus. Their programs and courses are carefully crafted to provide students with the necessary practical skills and experience to excel in the field.

Yes, there is a high demand for data analysts in the job market right now. This is because organizations across all sectors are increasingly relying on data analysis to drive business decisions and improve performance.

If you're interested in learning data analytics, the Certified Data Analyst Course by DataMites in Columbus is a great option. The course offers comprehensive training on essential data analytics skills, including machine learning, statistical analysis, programming languages, and data visualization.

According to INDEED.com, the average salary for a data analyst in Columbus is 77,032 USD  a year. 

The scope of data analytics in Columbus is significant, with many organizations increasingly relying on data-driven decision-making to inform their strategies. As a result, there is a growing demand for skilled data analysts who can interpret and analyze data to derive insights that drive business success. This presents numerous opportunities for individuals with expertise in data analytics in Columbus

In the field of data analytics, some of the top job roles are data analyst, business analyst, data scientist, data engineer, data architect, and data visualization specialist. A data analyst's job involves collecting, analyzing, and interpreting data, while business analysts evaluate market trends and help companies identify potential growth opportunities. Data scientists use statistical models and machine learning algorithms to analyze data and generate insights, while data engineers design and develop data systems. Data architects manage an organization's data infrastructure, while data visualization specialists use tools to create visual representations of data for better decision-making.

FAQ’S OF DATA ANALYST COURSE IN COLUMBUS

DataMites' data analytics course has several distinctive characteristics, including its comprehensive program, expert instructors, hands-on training with datasets, adaptable learning options, affordable tuition, internship opportunities, and an accredited certification approved by IABAC.

At DataMites, you can schedule a support session with our instructors to receive additional assistance with any course topic that you find difficult.

The DataMites Certified Data Analytics Course in Columbus spans six months and includes 20 hours of weekly instruction. Regular classes are held, and students receive continuous mentorship throughout the course.

The DataMites Certified Data Analyst Program in Columbus is open to anyone interested in learning data analytics and does not have any specific eligibility requirements.

The Certified Data Analytics Course in Columbus offered by DataMites can be paid for through various modes, such as cash, checks, debit cards, credit cards (Visa, Mastercard, and American Express), PayPal, and net banking.

The trainers teaching the Certified Data Analyst Course at DataMites are carefully selected to ensure they have extensive knowledge and experience in the field of data analytics.

The Flexi-Pass option offered by DataMites allows students to choose the timings that work best for them, whether it is live or recorded classes.

 Yes, DataMites offers IABAC® certification to students who successfully complete the Data Analytics Training program in Columbus.

At DataMites, the Certified Data Analyst Training Fee in Columbus can vary from USD 552 to USD 1,430.

Sure, you will need to bring a valid photo identification proof such as a National ID card or a Driving license. These documents are required for issuing the participation certificate and for booking the certification exam if necessary.

Certainly, you will be provided with a complimentary demo class to help you understand the format and content of the training. This will give you a good idea of what to expect from the training program

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

OTHER DATA ANALYST TRAINING CITIES IN USA

Global DATA ANALYTICS COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog