Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
MODULE 1: DATA ANALYSIS FOUNDATION
• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain
MODULE 2: CLASSIFICATION OF ANALYTICS
• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics
MODULE 3: CRIP-DM Model
• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling, Evaluation, Deploying,Monitoring
MODULE 4: UNIVARIATE DATA ANALYSIS
• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.
MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS
• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot
MODULE 6: BI-VARIATE DATA ANALYSIS
• Scatter Plots
• Regression Analysis
• Correlation Coefficients
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
MODULE 2 : HARNESSING DATA
MODULE 3 : EXPLORATORY DATA ANALYSIS
MODULE 4 : HYPOTHESIS TESTING
MODULE 1: COMPARISION AND CORRELATION ANALYSIS
• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis
MODULE 2: VARIANCE AND FREQUENCY ANALYSIS
• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis
MODULE 3: RANKING ANALYSIS
• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis
MODULE 4: BREAK EVEN ANALYSIS
• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing
MODULE 5: PARETO (80/20 RULE) ANALSYSIS
• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis
MODULE 6: Time Series and Trend Analysis
• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
MODULE 7: DATA ANALYSIS BUSINESS REPORTING
• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
MODULE 1: DATA ANALYTICS FOUNDATION
• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity
MODULE 2: OPTIMIZATION MODELS
• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity
MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION
• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel
MODULE 4: DECISION MODELING
• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool
MODULE 4: ML ALGO: KNN
• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering
MODULE 6: ML ALGO: DECISION TREE
• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool
MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool
MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
A Data Analytics course in Guntur prepares you for the growing analytics job market with Python, SQL, Excel, and visualization tools. You’ll gain practical skills, live project experience, and the ability to analyze business data effectively.
The Data Analyst course generally spans 4–8 months, combining live classes, interactive exercises, and hands-on projects. This ensures comprehensive learning for career-ready Data Analytics skills.
Data Analytics Course fees typically range from INR 30,000 – INR 100,000 depending on tools, practical exposure, and certifications. Some institutes offer flexible EMI plans to ease payments.
To find the best Data Analytics institute in Guntur, Look for certified trainers, real-time projects, internship opportunities, and placement support. A curriculum covering Python, SQL, Tableau, and Power BI ensures practical skill development.
Data Analytics careers are in high demand across IT, healthcare, finance, e-commerce, and consulting. Analysts convert raw data into actionable insights, enabling better business strategies and decision-making.
Data Analysts earn INR 3.5 – INR 8 LPA on average. Mastery in Python, SQL, visualization tools, and machine learning can further boost career growth and salary prospects. (Source: Glassdoor)
The program emphasizes Python, SQL, Excel, Tableau, and Power BI. Students also learn statistical analysis and predictive modeling to handle business data efficiently.
IT, fintech, healthcare, e-commerce, and logistics sectors in Andhra Pradesh are increasingly hiring Data Analysts for dashboards, KPI reporting, and data-driven strategy decisions.
Start with Python, statistics, and data preprocessing. Advanced modules include AI and ML applications integrated with analytics for predictive and prescriptive business insights.
Opportunities After completing a Data Analytics course in India, include Data Analyst, BI Analyst, Operations Analyst, and roles in AI/ML domains. Companies across IT, finance, healthcare, and startups actively recruit analytics professionals.
Students work on real datasets, predictive modeling, and business scenarios. This enhances analytical thinking, data-driven decision-making, and problem-solving capabilities.
Projects include sales prediction, churn analysis, customer segmentation, and KPI dashboards. These simulate real business scenarios for hands-on learning.
The data analyst course aligns with IT, fintech, healthcare, and e-commerce demands. Skills in Python, SQL, Tableau, and Power BI make graduates job-ready for emerging analytics roles.
Data Analytics focuses on interpreting past and current data for insights. Data Science goes further with predictive modeling, AI, and machine learning to forecast trends and support strategic planning.
Top recruiters include TCS, Infosys, Wipro, Accenture, Deloitte, IBM, Amazon, Flipkart, and analytics startups that actively hire skilled Data Analytics professionals.
DataMites, Data Analytics Course in Guntur offers certified trainers, live projects, hands-on labs, and placement assistance. Students gain practical Data Analytics expertise for career-ready skills and industry exposure.
Yes. The program provides Data Analytics Course with internships in Guntur and real-time projects to gain practical analytics experience and build a strong portfolio.
Yes. Flexible EMI plans help students pay Data Analytics Course fees in installments while accessing live classes, tools, and career guidance for smooth learning.
DataMites has a transparent refund policy with defined timelines. Students are informed at enrollment about eligibility and procedures for smooth cancellation.
The Data Analytics course fees at DataMites vary based on the learning mode, with online training priced at INR 61,135, blended learning at INR 38,477, and classroom training at INR 66,647, offering flexible options from affordable to premium plans.
Yes. Data Analytics Course at DataMites offers students get resume building, mock interviews, and access to companies looking for skilled Data Analytics professionals.
Yes. DataMites Students work on live datasets, predictive modeling, dashboards, and capstone projects to simulate real-world business analytics scenarios.
The complete Data Analytics Course in Guntur runs 6 months, covering Python, SQL, Excel, Tableau, Power BI, and hands-on projects for career readiness.
DataMites Guntur accepts Payments can be made via UPI, net banking, debit/credit cards, online transfer, or flexible EMI options for convenience.
The Flexi Pass allows extra sessions, batch transfers, and topic revisions so students can master all Data Analytics concepts at their own pace.
The headquarters is at Bangalore, Kudlu Gate, Karnataka, India, managing all courses, certifications, and national-level support for learners.
DataMites Bangalore: Bajrang House, 7th Mile, C-25, Bengaluru - Chennai Hwy, Kudlu Gate, Garvebhavi Palya, Bengaluru, Karnataka 560068.
DataMites has 30+ offline centres across India, like Bangalore, Pune, Hyderabad, Chennai, Mumbai, Vizag, Ahmedabad, Nagpur, Delhi, Noida, Coimbatore, Kolkata, Bhubaneswar, and Chandigarh, delivering Data Analytics, AI, and Data Science courses in major metro and tier-2 cities.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.