ARTIFICIAL INTELLIGENCE CERTIFICATION AUTHORITIES

Artificial Intelligence Course Features

ARTIFICIAL INTELLIGENCE LEAD MENTORS

ARTIFICIAL INTELLIGENCE COURSE FEE IN GANDHINAGAR

Live Virtual

Instructor Led Live Online

154,000
81,900

  • IABAC® & DMC Certification
  • 9-Month | 780 Learning Hours
  • 100-Hour Live Online Training
  • 10 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

92,000
57,900

  • Self Learning + Live Mentoring
  • IABAC® & DMC Certification
  • 1 Year Access To Elearning
  • 10 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Learner assistance and support

Classroom

In - Person Classroom Training

154,000
86,900

  • IABAC® & DMC Certification
  • 9-Month | 780 Learning Hours
  • 100-Hour Classroom Sessions
  • 10 Capstone & 1 Client Project
  • Cloud Lab Access
  • Internship + Job Assistance

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING ARTIFICIAL INTELLIGENCE ONLINE CLASSES IN GANDHINAGAR

BEST ARTIFICIAL INTELLIGENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR ARTIFICIAL INTELLIGENCE COURSE

Why DataMites Infographic

SYLLABUS OF AI COURSE IN GANDHINAGAR

MODULE 1 : ARTIFICIAL INTELLIGENCE OVERVIEW 

• Evolution Of Human Intelligence
• What Is Artificial Intelligence?
• History Of Artificial Intelligence
• Why Artificial Intelligence Now?
• Areas Of Artificial Intelligence
• AI Vs Data Science Vs Machine Learning

MODULE 2 :  DEEP LEARNING INTRODUCTION

• Deep Neural Network
• Machine Learning vs Deep Learning
• Feature Learning in Deep Networks
• Applications of Deep Learning Networks

MODULE3 : TENSORFLOW FOUNDATION

• TensorFlow Structure and Modules
• Hands-On:ML modeling with TensorFlow

MODULE 4 : COMPUTER VISION INTRODUCTION

• Image Basics
• Convolution Neural Network (CNN)
• Image Classification with CNN
• Hands-On: Cat vs Dogs Classification with CNN Network

MODULE 5 : NATURAL LANGUAGE PROCESSING (NLP)

• NLP Introduction
• Bag of Words Models
• Word Embedding
• Hands-On:BERT Algorithm

MODULE 6 : AI ETHICAL ISSUES AND CONCERNS

• Issues And Concerns Around Ai
• Ai And Ethical Concerns
• Ai And Bias
• Ai:Ethics, Bias, And Trust

MODULE 1 : PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2 : PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3 : PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4 : PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1 : OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2 : HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3 : EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empherical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4 : HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2: PYTHON NUMPY  PACKAGE 

• Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3: PYTHON PANDAS PACKAGE

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4:  VISUALIZATION WITH PYTHON - Matplotlib 

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION 

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1:  FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4: ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7:  GRADIENT BOOSTING, XGBOOST 

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python

MODULE 2:  SENTIMENT ANALYSIS

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3:  REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4: ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL 

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure,AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8: INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

 MODULE 2: SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL)

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS

• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join
• Windows functions: Over, Partition , Rank 

MODULE 6: SQL COMMANDS AND CLAUSES

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

 MODULE 7: DOCUMENT DB/NO-SQL DB

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

• Organize code with branches
• Checkout branch
• Merge branches
• Editing Commits
• Commit command Amend flag
• Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET 

• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

  • Big Data Overview
  • Five Vs of Big Data
  • What is Big Data and Hadoop
  • Introduction to Hadoop
  • Components of Hadoop Ecosystem
  • Big Data Analytics Introduction

MODULE 2: HDFS AND MAP REDUCE 

  • HDFS – Big Data Storage
  • Distributed Processing with Map Reduce
  • Mapping and reducing  stages concepts
  • Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

  • PySpark Introduction
  • Spark Configuration
  • Resilient distributed datasets (RDD)
  • Working with RDDs in PySpark
  • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

  • Introducing Spark SQL
  • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2: POWER-BI BASICS 

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4 :  CONNECTING TO VARIOUS DATA SOURCES 

 • Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

MODULE 1: NEURAL NETWORKS 

 • Structure of neural networks
 • Neural network - core concepts(Weight initialization)
 • Neural network - core concepts(Optimizer)
 • Neural network - core concepts(Need of activation)
 • Neural network - core concepts(MSE & RMSE)
 • Feed forward algorithm
 • Backpropagation

MODULE 2: IMPLEMENTING DEEP NEURAL NETWORKS 

 • Introduction to neural networks with tf2.X
 • Simple deep learning model in Keras (tf2.X)
 • Building neural network model in TF2.0 for MNIST dataset

MODULE 3: DEEP COMPUTER VISION - IMAGE RECOGNITION

• Convolutional neural networks (CNNs)
• CNNs with Keras-part1
• CNNs with Keras-part2
• Transfer learning in CNN
• Flowers dataset with tf2.X(part-1)
• Flowers dataset with tf2.X(part-2)
• Examining x-ray with CNN model

MODULE 4 : DEEP COMPUTER VISION - OBJECT DETECTION

 • What is Object detection
 • Methods of Object Detections
 • Metrics of Object detection
 • Bounding Box regression
 • labelimg
 • RCNN
 • Fast RCNN
 • Faster RCNN
 • SSD
 • YOLO Implementation
 • Object detection using cv2

MODULE 5: RECURRENT NEURAL NETWORK 

• RNN introduction
• Sequences with RNNs
• Long short-term memory networks(part 1)
• Long short-term memory networks(part 2)
• Bi-directional RNN and LSTM
• Examples of RNN applications

MODULE 6: NATURAL LANGUAGE PROCESSING (NLP)

• Introduction to Natural language processing
• Working with Text file
• Working with pdf file
• Introduction to regex
• Regex part 1
• Regex part 2
• Word Embedding
• RNN model creation
• Transformers and BERT
• Introduction to GPT (Generative Pre-trained Transformer)
• State of art NLP and projects

MODULE 7: PROMPT ENGINEERING

• Introduction to Prompt Engineering
• Understanding the Role of Prompts in AI Systems
• Design Principles for Effective Prompts
• Techniques for Generating and Optimizing Prompts
• Applications of Prompt Engineering in Natural Language Processing

MODULE 8: REINFORCEMENT LEARNING

• Markov decision process
• Fundamental equations in RL
• Model-based method
• Dynamic programming model free methods

MODULE 9: DEEP REINFORCEMENT LEARNING

• Architectures of deep Q learning
• Deep Q learning
• Reinforcement Learning Projects with OpenAI Gym

MODULE 10: Gen AI

• Gan introduction, Core Concepts, and Applications
• Core concepts of GAN
• GAN applications
• Building GAN model with TensorFlow 2.X
• Introduction to GPT (Generative Pre-trained Transformer)
• Building a Question answer bot with the models on Hugging Face

MODULE 11: Gen AI

• Introduction to Autoencoder
• Basic Structure and Components of Autoencoders
• Types of Autoencoders: Vanilla, Denoising, Variational, Sparse, and Convolutional Autoencoders
• Training Autoencoders: Loss Functions, Optimization Techniques
• Applications of Autoencoders: Dimensionality Reduction, Anomaly Detection, Image

OFFERED ARTIFICIAL INTELLIGENCE COURSES IN GANDHINAGAR

ARTIFICIAL INTELLIGENCE TRAINING REVIEWS

ABOUT ARTIFICIAL INTELLIGENCE TRAINING IN GANDHINAGAR

DataMites, a leading institution for Artificial Intelligence Training, empowers professionals and students to master industry-relevant skills through meticulously designed courses. With over 100,000 learners trained globally, DataMites has earned a reputation for excellence and innovation in AI and machine learning Courses.

As a trusted name in the industry, DataMites holds more than 20 prestigious accreditations, ensuring that the courses meet the highest standards of education and industry relevance. The Artificial Intelligence courses are designed to provide hands-on experience with real-world projects, offering practical skills that are highly valued by employers.

DataMites Artificial Intelligence course in Gandhinagar curriculum covers everything from data manipulation and visualization to advanced machine learning techniques, providing a comprehensive learning experience. The institute’s expert instructors, with years of industry experience, guide learners through the complexities of the subject matter with ease.

The Artificial Intelligence Engineer Course offered by DataMites, accredited by IABAC and NASSCOM FutureSkills, aligns with global industry standards. This 9-month, immersive training program is offered at an offline center in Gandhinagar, blending in-person instruction with practical learning. The course offers live projects, internships, and training designed to cater to both professionals and students. With dedicated placement support, participants acquire the skills and confidence needed to thrive in AI-driven industries.

IT Industry Insights for Gandhinagar

The Gujarat International Finance Tec-City (GIFT City) has positioned Gandhinagar as a global destination for IT and fintech companies, offering state-of-the-art facilities and a business-friendly environment. According to a recent industry report by NASSCOM, the city has seen an annual growth rate of 12% in IT services, making it a key destination for IT investments in the region.

Located just 30 kilometers from Gandhinagar, Ahmedabad complements the region's IT growth with its established industrial base and educational institutions. Reports from Gartner indicate Ahmedabad's IT sector has been growing at 15% annually, driven by advancements in software development, IT-enabled services, and e-governance solutions.

As one of India’s leading IT hubs, Pune, located in proximity to Gandhinagar, offers immense opportunities for collaboration and talent sharing. According to a 2024 IDC report, Pune accounts for 13% of India’s total IT exports, with a strong presence of multinational corporations like Infosys, Cognizant, and IBM. The city has also emerged as a hub for cutting-edge technologies, including artificial intelligence, IoT, and enterprise software solutions.

Why Choose Gandhinagar for Artificial Intelligence Training?

With its focus on innovation, infrastructure, and government initiatives, the city is an ideal destination for those looking to excel in Artificial Intelligence Course in Gandhinagar. Here’s why Gandhinagar stands out as a great choice for AI training:

  1. Technological Ecosystem: Gandhinagar is home to several IT parks, research institutions, and educational hubs, making it a thriving location for learning and implementing AI technologies.
  2. Industry Linkages and Job Opportunities: Being close to Ahmedabad, Gandhinagar benefits from its proximity to a growing industrial base. Companies in the IT, finance, healthcare, and manufacturing sectors are actively exploring AI solutions, increasing the demand for skilled professionals. According to Ambitious Box, the average salary for an AI Engineer in Gandhinagar is 8 lakhs per year.
  3. Affordable and Conducive Environment: Gandhinagar offers a clean, green, and peaceful environment, ideal for focused learning. The cost of living is relatively lower compared to metropolitan cities, making it an affordable destination for students.
  4. Networking and Events: Frequent AI and tech-related events, workshops, and hackathons are organized in Gandhinagar and nearby cities, providing learners with opportunities to interact with AI experts and industry leaders.

Job Opportunities in Artificial Intelligence in Gandhinagar

With its strategic location, government initiatives, and burgeoning tech ecosystem, Gandhinagar offers exciting job opportunities in the field of Artificial Intelligence. Here’s an overview of the job landscape for Artificial Intelligence Training in Gandhinagar.

  1. Machine Learning Engineer: Developing algorithms and models for data analysis and predictions.
  2. AI Data Scientist: Analyzing data to extract meaningful insights using AI techniques.
  3. Computer Vision Specialist: Working on projects involving image recognition, object detection, and facial recognition.
  4. Natural Language Processing (NLP) Expert: Building AI-powered chatbots, voice assistants, and language translation tools.
  5. AI Product Manager: Managing the design and implementation of AI-driven products.

To succeed in these roles, professionals must develop key Artificial Intelligence skills, including proficiency in programming languages like Python or R, building machine learning models, working with neural networks, and utilizing tools such as TensorFlow and Keras. Expertise in big data frameworks like Hadoop and Spark, as well as experience with cloud platforms and AI ethics, can greatly enhance their competitive edge.

Moreover, strong soft skills, such as analytical thinking, problem-solving, and effective communication, are crucial for interpreting AI insights and presenting them clearly to stakeholders.

Why DataMites for Artificial Intelligence Training in Gandhinagar?

  1. Global Recognition: Our Artificial Intelligence courses in Gandhinagar come with certifications accredited by esteemed organizations such as IABAC and NASSCOM FutureSkills, ensuring international credibility and career advancement.
  2. Expert Faculty: Learn from industry-leading experts, including renowned AI specialist Ashok Veda, who bring a wealth of practical experience and in-depth knowledge to enrich your learning journey.
  3. Flexible Learning Options: DataMites provides both online and on demand offline Artificial Intelligence courses in Gandhinagar, with a conveniently located offline center for easy accessibility.
  4. Practical Project and Internships: Our Artificial Intelligence Courses in Gandhinagar with internships, seamlessly combine academic learning with practical training.
  5. Placement Assistance: DataMites offers Artificial Intelligence courses in Gandhinagar with placement assistance, ensuring a seamless transition from education to employment.

Innovative 3-Phase Learning Methodology at DataMites

DataMites adopts a well-structured 3-Phase Learning Methodology, crafted to deliver a dynamic and hands-on educational experience.

Phase 1: Pre-Course Self-Study

Students start their learning journey with high-quality video tutorials and detailed study materials, establishing a strong foundation in artificial intelligence concepts.

Phase 2: Immersive Training

This phase involves 20 hours of intensive weekly training spread across three months. Learners have the option to choose between live online sessions or offline artificial intelligence courses in Gandhinagar. The curriculum combines practical projects, expert guidance, and industry-focused content to deliver a comprehensive and enriching learning experience.

Phase 3: Internship & Placement Assistance

Students undertake 20 capstone projects and a client project, culminating in a distinguished internship certification. DataMites' Placement Assistance Team (PAT) provides personalized career support, helping students secure positions with top-tier companies.

Comprehensive Artificial Intelligence Curriculum

Our Artificial Intelligence Engineer Courses in Gandhinagar integrate the AI Expert and Certified Data Scientist (CDS) programs, offering a thorough and comprehensive education in artificial intelligence and data science. The Artificial Intelligence course curriculum covers a comprehensive range of topics, including:

  1. Python Foundation
  2. Data Science Foundations
  3. Machine Learning Expert
  4. Advanced Data Science
  5. Version Control with Git
  6. Big Data Foundation
  7. Certified BI Analyst
  8. Database: SQL and MongoDB
  9. Artificial Intelligence Foundation

This all-encompassing approach equips students with the critical knowledge and skills required to thrive in the fast-paced and ever-evolving field of artificial intelligence.

Additional AI Certifications from DataMites

  1. Artificial Intelligence for Managers: A specialized program aimed at business leaders, emphasizing the integration of AI into strategic decision-making and the optimization of business operations.
  2. Certified NLP Expert: A focused course on Natural Language Processing, ideal for individuals eager to explore AI’s ability to understand and interpret human language.
  3. Artificial Intelligence Expert: A course designed for both beginners and intermediate data science professionals, offering a robust, career-focused foundation in AI.
  4. Artificial Intelligence Foundation: An introductory program that provides a comprehensive understanding of AI's core principles and fundamental concepts.

DataMites Artificial Intelligence Course Tools in Gandhinagar

In our Artificial Intelligence Institute in Gandhinagar, we provide comprehensive coverage of a wide array of AI tools, ensuring you gain the essential skills and expertise. These tools encompass:

  1. Anaconda
  2. Python
  3. Apache Pyspark
  4. Git
  5. Hadoop
  6. MySQL
  7. MongoDB
  8. Amazon SageMaker
  9. Google Bert
  10. Google Colab
  11. Advanced Excel
  12. Scikit Learn
  13. Azure Machine Learning
  14. Flask
  15. Apache Kafka
  16. Power BI
  17. GitHub
  18. Numpy
  19. TensorFlow
  20. Pandas
  21. Tableau
  22. Atlassian BitBucket
  23. Natural Language Toolkit
  24. PyCharm

Elevate Your Career with DataMites in Gandhinagar

The fascinating world of Artificial Intelligence is where machines are learning, reasoning, and problem-solving like never before. The global AI market is projected to surpass $126 billion by 2025, driven by breakthroughs in AI algorithms and the growing adoption of AI technologies across various industries.

Gandhinagar offers a dynamic ecosystem with a robust mix of industries, research organizations, and academic institutions, creating abundant opportunities for AI professionals. With its strategic positioning and strong economic growth, the city is a prime destination for those seeking top-tier AI education and promising career prospects.

In addition to artificial intelligence courses, DataMites also offers training in machine learning, deep learning, Python, IoT, data engineering, MLOps, Tableau, data mining, Python for data science, data analytics, and data science.

ABOUT ARTIFICIAL INTELLIGENCE COURSE IN GANDHINAGAR

Artificial Intelligence (AI) is a broader concept that encompasses the development of intelligent systems that can perform tasks requiring human intelligence. Machine Learning (ML), on the other hand, is a subset of AI that focuses on enabling systems to learn and improve from data without being explicitly programmed. ML algorithms allow systems to automatically learn patterns and make predictions based on the data they are exposed to.

Artificial Intelligence refers to the development of intelligent machines that can perform tasks requiring human intelligence. It involves creating systems and algorithms that can autonomously learn, reason, and make decisions, resembling human-like intelligence.

Instances of AI in daily life include virtual assistants like Siri, Alexa, and Google Assistant, recommendation systems used by streaming platforms and e-commerce websites, email spam filters, autonomous vehicles and self-driving cars, facial recognition technology in smartphones, and natural language processing in chatbots and customer support systems.

Advantages: Automation of repetitive tasks, increased accuracy and precision in decision-making, ability to handle large amounts of data, and enhanced capabilities in various industries.

Disadvantages: Job displacement due to automation, ethical concerns related to privacy and bias, dependency on AI systems, and high development costs.

A strong educational background in computer science, mathematics, or a related field is typically required. This includes bachelor's or master's degrees in AI or computer science, proficiency in programming languages, understanding of algorithms and statistics, and familiarity with machine learning and deep learning concepts.

The AI Engineer Course provides comprehensive training in AI, covering machine learning, deep learning, natural language processing, computer vision, and AI deployment techniques. Participants learn to build AI models, analyze data, and solve real-world problems through theoretical concepts, hands-on exercises, and practical projects.

The AI Expert Course is an advanced-level program that focuses on advanced AI algorithms, emerging trends, research, and complex applications. It offers specialized modules in areas such as deep learning, computer vision, natural language processing, or reinforcement learning.

To transition into an AI career from a different field, individuals can assess their existing skills, gain foundational knowledge through online courses, build practical projects, network with AI professionals, consider further education or certifications, seek entry-level positions, and continuously update skills in line with AI advancements.

Job roles in AI include AI Engineer/Developer, Machine Learning Engineer, Data Scientist, AI Research Scientist, NLP Engineer, Computer Vision Engineer, Robotics Engineer, AI Project Manager, and AI Consultant.

Yes, artificial intelligence is considered a promising career choice due to the increasing demand for AI professionals in various industries. Staying updated with advancements is essential in this evolving field.

Steps to start a career in AI include gaining a strong foundation in relevant subjects, pursuing education or certifications, acquiring knowledge in machine learning and deep learning, building a portfolio, seeking practical experience, continuous learning, networking, and considering advanced education or specialized certifications.

Python is considered a highly suitable programming language for AI development due to its extensive libraries and frameworks supporting machine learning, deep learning, and natural language processing. Python's simplicity and community support make it popular among AI practitioners.

Comparing the advantages of AI and ML is subjective, as they are closely related. AI allows machines to exhibit human-like intelligence, while ML focuses on algorithms that learn from data. Both AI and ML have numerous applications and offer significant benefits in various domains, such as healthcare, finance, and automation.

View more

FAQ’S OF ARTIFICIAL INTELLIGENCE TRAINING IN GANDHINAGAR

DataMites provides certifications in Gandhinagar from respected organizations such as IABAC, JAINx, and NASSCOM FutureSkills Prime, validating skills and enhancing credibility in the field of AI.

The duration of the Artificial Intelligence Course in Gandhinagar offered by DataMites varies depending on the specific course chosen, ranging from one month to a year. Flexible training options are available on both weekdays and weekends.

Knowledge in the field of Artificial Intelligence can be acquired through self-study using online resources, enrolling in AI courses in Gandhinagar, pursuing formal education, attending workshops and conferences, and gaining hands-on experience through practical projects.

The Certified NLP Expert course offered by DataMites in Gandhinagar focuses on Natural Language Processing (NLP) skills and applications. It covers topics such as text preprocessing, sentiment analysis, named entity recognition, topic modeling, language generation, and neural network-based NLP models.

The Artificial Intelligence for Managers Course provided by DataMites in Gandhinagar covers topics such as AI basics, machine learning, deep learning, natural language processing, computer vision, AI implementation challenges, ethical considerations, and AI project management.

The purpose of the AI Engineer Course provided by DataMites in Gandhinagar is to equip individuals with the necessary skills and knowledge to become proficient AI engineers. This course covers various aspects of AI, including machine learning, deep learning, natural language processing, computer vision, and AI deployment techniques, through hands-on projects and case studies.

The AI Foundation Course in Gandhinagar at DataMites provides a comprehensive introduction to AI, covering the basics of AI, machine learning, and deep learning. It includes topics such as supervised and unsupervised learning, neural networks, deep learning algorithms, model evaluation, and deployment techniques.

Anyone interested in pursuing a career in Artificial Intelligence can enroll in an Artificial Intelligence Certification Training in Gandhinagar. There are generally no strict prerequisites in terms of educational background or prior experience.

The average salary for an Artificial Intelligence Engineer in Gandhinagar may vary based on factors such as experience, skills, industry, and the specific organization. The exact figure without specific data for Gandhinagar is difficult to provide. However, according to Glassdoor, the average annual salary for an AI Engineer in India is approximately INR 9,44,075.

Yes, DataMites allows individuals to attend a free demo class before enrolling in the Artificial Intelligence Training in Gandhinagar. This provides potential participants with an opportunity to get an overview of the training program, its content, teaching methodology, and the overall learning experience. The demo class serves as an introductory session to help individuals make an informed decision about enrolling in the Artificial Intelligence course at DataMites.

The fee for the Artificial Intelligence Training program at DataMites in Gandhinagar may vary based on factors such as the specific course chosen and the duration of the program. Generally, the fee for the Artificial Intelligence course in Gandhinagar ranges from INR 60,795 to INR 154,000. The exact fee structure can be obtained from DataMites based on the specific course and its offerings.

Valid photo identification proofs, such as a National ID card or driving license, are required during the Artificial Intelligence Classes in Gandhinagar at DataMites for authentication purposes and to issue the participation certificate and book the certification exam.

In case of inability to attend a session during the Artificial Intelligence training at DataMites in Gandhinagar, participants can schedule a makeup class with instructors or access recorded sessions for online training to catch up on missed content and ensure a comprehensive learning experience.

Yes, DataMites offers Artificial Intelligence Courses in Gandhinagar that include placement assistance. Their Placement Assistance Team (PAT) supports students in various aspects of the job search process, including job connections, resume creation, conducting mock interviews, and facilitating discussions on interview questions. The aim is to assist participants in securing employment opportunities in the field of Artificial Intelligence by providing guidance and resources throughout the placement process.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

OTHER AI TRAINING CITIES IN INDIA

Global ARTIFICIAL INTELLIGENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog