Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python objects
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
• Operator’s precedence and associativity
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• String object basics and inbuilt methods
• List: Object, methods, comprehensions
• Tuple: Object, methods, comprehensions
• Sets: Object, methods, comprehensions
• Dictionary: Object, methods, comprehensions
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Iterators
• Generator functions
• Lambda functions
• Map, reduce, filter functions
MODULE 5: PYTHON NUMPY PACKAGE
• NumPy Introduction
• Array – Data Structure
• Core Numpy functions
• Matrix Operations
MODULE 6: PYTHON PANDAS PACKAGE
• Pandas functions
• Data Frame and Series – Data Structure
• Data munging with Pandas
• Imputation and outlier analysis
MODULE 1: DATA SCIENCE ESSENTIALS
• Introduction to Data Science
• Data Science Terminologies
• Classifications of Analytics
• Data Science Project workflow
MODULE 2: DATA ENGINEERING FOUNDATION
• Introduction to Data Engineering
• Data engineering importance
• Ecosystems of data engineering tools
• Core concepts of data engineering
MODULE 3: PYTHON FOR DATA SCIENCE
• Introduction to Python
• Python Data Types, Operators
• Flow Control statements, Functions
• Structured vs Unstructured Data
• Python Numpy package introduction
• Array Data Structures in Numpy
• Array operations and methods
• Python Pandas package introduction
• Data Structures : Series and DataFrame
• Pandas DataFrame key methods
MODULE 4: VISUALIZATION WITH PYTHON
• Visualization Packages (Matplotlib)
• Components Of A Plot, Sub-Plots
• Basic Plots: Line, Bar, Pie, Scatter
• Advanced Python Data Visualizations
MODULE 5: R LANGUAGE ESSENTIALS
• R Installation and Setup
• R STUDIO – R Development Env
• R language basics and data structures
• R data structures , control statements
MODULE 6: STATISTICS
• Descriptive And Inferential statistics
• Types Of Data, Sampling types
• Measures of Central Tendencies
• Data Variability: Standard Deviation
• Z-Score, Outliers, Normal Distribution
• Central Limit Theorem
• Histogram, Normality Tests
• Skewness & Kurtosis
• Understanding Hypothesis Testing
• P-Value Method, Types Of Errors
• T Distribution, One Sample T-Test
• Independent And Relational T Tests
• Direct And Indirect Correlation
• Regression Theory
MODULE 7: MACHINE LEARNING INTRODUCTION
• Machine Learning Introduction
• ML core concepts
• Unsupervised and Supervised Learning
• Clustering with K-Means
• Regression and Classification Models.
• Regression Algorithm: Linear Regression
• ML Model Evaluation
• Classification Algorithm: Logistic Regression
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification, And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Modeling and Evaluation in Python
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Modeling and Evaluation in Python
MODULE 4: ML ALGO: KNN
• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Modeling and Evaluation in Python
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Modeling in Python
MODULE 6: PRINCIPLE COMPONENT ANALYSIS (PCA)
• Building Blocks Of PCA
• How it works: Finding Principal Components
• Modeling PCA in Python
MODULE 7: ML ALGO: DECISION TREE
• Random Forest Ensemble technique
• How it works: Bagging Theory
• Modeling and Evaluation in Python
MODULE 8: ML ALGO: NAÏVE BAYES
• Introduction to Naive Bayes
• How it works: Bayes' Theorem
• Naive Bayes For Text Classification
• Modeling and Evaluation in Python
MODULE 9: GRADIENT BOOSTING, XGBOOST
• Introduction to Boosting and XGBoost
• How it works: weak learners' concept
• Modeling and Evaluation of in Python
MODULE 10: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python
MODULE 11: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN
• How It Works: Back prop, Gradient Descent
• Modeling and Evaluation of ANN in Python
MODULE 12: ADVANCED ML CONCEPTS
• Adv Metrics (Roc_Auc, R2, Precision, Recall)
• K-Fold Cross-validation
• Grid And Randomized Search CV In Sklearn
• Imbalanced Data Set: Smote Technique
• Feature Selection Techniques
MODULE 1: TIME SERIES FORECASTING - ARIMA
• What is Time Series?
• Trend, Seasonality, cyclical and random
• Autoregressive Model (AR)
• Moving Average Model (MA)
• Stationarity of Time Series
• ARIMA Model
• Autocorrelation and AIC
MODULE 2: FEATURE ENGINEERING
• Introduction to Features Engineering
• Transforming Predictors
• Feature Selection methods
• Backward elimination technique
• Feature importance from ML modeling
MODULE 3: SENTIMENT ANALYSIS
• Introduction to Sentiment Analysis
• Python packages: TextBlob, NLTK
• Case study: Twitter Live Sentiment Analysis
MODULE 4: REGULAR EXPRESSIONS WITH PYTHON
• Regex Introduction
• Regex codes
• Text extraction with Python Regex
MODULE 5: ML MODEL DEPLOYMENT WITH FLASK
• Introduction to Flask
• URL and App routing
• Flask application – ML Model Deployment
MODULE 6: ADVANCED DATA ANALYSIS WITH MS EXCEL
• MS Excel core Functions
• Pivot Table
• Advanced Functions (VLOOKUP, INDIRECT..)
• Linear Regression with EXCEL
• Goal Seek Analysis
• Data Table
• Solving Data Equation with EXCEL
• Monte Carlo Simulation with MS EXCEL
MODULE 7: AWS CLOUD FOR DATA SCIENCE
• Introduction of cloud
• Difference between GCC, Azure, AWS
• AWS Service ( EC2 and S3 service)
• AWS Service (AMI), AWS Service (RDS)
• AWS Service (IAM), AWS (Athena service)
• AWS (EMR), AWS, AWS (Redshift)
• ML Modeling with AWS Sage Maker
MODULE 8: AZURE FOR DATA SCIENCE
• Introduction to AZURE ML studio
• Data Pipeline and ML modeling with Azure
MODULE 1: GIT INTRODUCTION
• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture
MODULE 2: GIT REPOSITORY and GitHub
• Git Repo Introduction
• Create New Repo with Init command
• Copying existing repo
• Git user and remote node
• Git Status and rebase
• Review Repo History
• GitHub Cloud Remote Repo
MODULE 3: COMMITS, PULL, FETCH AND PUSH
• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo
MODULE 4: TAGGING, BRANCHING, AND MERGING
• Organize code with branches
• Checkout branch
• Merge branches
MODULE 5: UNDOING CHANGES
• Editing Commits
• Commit command Amend flag
• Git reset and revert
MODULE 6: GIT WITH GITHUB AND BITBUCKET
• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
• Bitbucket Git account
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
• Hands-on Map Reduce task
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
• Working with Spark SQL Query Language
MODULE 5: MACHINE LEARNING WITH SPARK ML
• Introduction to MLlib Various ML algorithms supported by MLib
• ML model with Spark ML.
• Linear regression
• logistic regression
• Random forest
MODULE 6: KAFKA and Spark
• Kafka architecture
• Kafka workflow
• Configuring Kafka cluster
• Operations
MODULE 1: BUSINESS INTELLIGENCE INTRODUCTION
• What Is Business Intelligence (BI)?
• What Bi Is The Core Of Business Decisions?
• BI Evolution
• Business Intelligence Vs Business Analytics
• Data Driven Decisions With Bi Tools
• The Crisp-Dm Methodology
MODULE 2: BI WITH TABLEAU: INTRODUCTION
• The Tableau Interface
• Tableau Workbook, Sheets And Dashboards
• Filter Shelf, Rows And Columns
• Dimensions And Measures
• Distributing And Publishing
MODULE 3: TABLEAU: CONNECTING TO DATA SOURCE
• Connecting To Data File , Database Servers
• Managing Fields
• Managing Extracts
• Saving And Publishing Data Sources
• Data Prep With Text And Excel Files
• Join Types With Union
• Cross-Database Joins
• Data Blending
• Connecting To Pdfs
MODULE 4: TABLEAU: BUSINESS INSIGHTS
• Getting Started With Visual Analytics
• Drill Down And Hierarchies
• Sorting & Grouping
• Creating And Working Sets
• Using The Filter Shelf
• Interactive Filters
• Parameters
• The Formatting Pane
• Trend Lines & Reference Lines
• Forecasting
• Clustering
MODULE 5: DASHBOARDS, STORIES AND PAGES
• Dashboards And Stories Introduction
• Building A Dashboard
• Dashboard Objects
• Dashboard Formatting
• Dashboard Interactivity Using Actions
• Story Points
• Animation With Pages
MODULE 6: BI WITH POWER-BI
• Power BI basics
• Basics Visualizations
• Business Insights with Power BI
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
• Comments
• import and export dataset
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: ARTIFICIAL INTELLIGENCE OVERVIEW
• Evolution Of Human Intelligence
• What Is Artificial Intelligence?
• History Of Artificial Intelligence.
• Why Artificial Intelligence Now?
• Ai Terminologies
• Areas Of Artificial Intelligence
• Ai Vs Data Science Vs Machine Learning
MODULE 2: DEEP LEARNING INTRODUCTION
• Deep Neural Network
• Machine Learning vs Deep Learning
• Feature Learning in Deep Networks
• Applications of Deep Learning Networks
MODULE 3: TENSORFLOW FOUNDATION
• TensorFlow Installation and setup
• TensorFlow Structure and Modules
• Hands-On: ML modeling with TensorFlow
MODULE 4: COMPUTER VISION INTRODUCTION
• Image Basics
• Convolution Neural Network (CNN)
• Image Classification with CNN
• Hands-On: Cat vs Dogs Classification with CNN Network
MODULE 5: NATURAL LANGUAGE PROCESSING (NLP)
• NLP Introduction
• Bag of Words Models
• Word Embedding
• Language Modeling
• Hands-On: BERT Algorithm
MODULE 6: AI ETHICAL ISSUES AND CONCERNS
• Issues And Concerns Around Ai
• Ai And Ethical Concerns
• Ai And Bias
• Ai: Ethics, Bias, And Trust
Data science is a multidisciplinary field that involves extracting knowledge and insights from structured and unstructured data using various scientific methods, algorithms, and tools. It combines elements of statistics, mathematics, computer science, and domain expertise to uncover patterns, make predictions, and drive data-driven decision-making.
Learning data science is crucial in today's data-driven world because it equips individuals with the skills to analyze and interpret vast amounts of data. By leveraging data science techniques, organizations can gain valuable insights, improve efficiency, make informed decisions, and gain a competitive advantage in their respective industries.
To become a data scientist, several skills are essential, including:
To learn data science effectively, you can follow these steps:
Data scientists often face several challenges, including:
The cost of a data science course in Gandhinagar ranges from INR 40,000 to INR 50,000 depending on the institute, course duration, and curriculum.
The eligibility criteria for data science courses may vary depending on the institution or program. However, common requirements may include:
Data science has a vast scope across various industries and sectors. As businesses continue to generate massive amounts of data, there is an increasing demand for skilled data scientists. Data science can be applied in fields such as finance, healthcare, marketing, e-commerce, manufacturing, and more. It offers opportunities for extracting insights, making predictions, improving processes, and driving innovation.
Obtaining a certification in data science is important as it provides formal recognition of one's skills and knowledge in the field, enhancing credibility and employability in the competitive job market.
Yes, there is a high demand for data science courses due to the increasing reliance on data-driven decision-making in various industries, leading to a growing need for skilled professionals who can effectively analyze and interpret complex data sets.
Yes, SQL is a necessary skill for data science as it is widely used for data extraction, manipulation, and analysis from relational databases.
Entry-level professionals in data science have promising career prospects, with opportunities to work as data analysts, data engineers, machine learning engineers, or data scientists in various industries.
Top companies hiring freshers in data science include Google, Microsoft, Amazon, Facebook, IBM, and many more, as they recognize the value of data-driven decision-making.
A solid understanding of statistics is essential for data science as it forms the foundation for data analysis, modeling, and interpretation, enabling meaningful insights to be derived from data.
Yes, data science involves a significant amount of math, including statistics, linear algebra, probability, and calculus, as these concepts are fundamental for data analysis, modeling, and machine learning algorithms.
DataMites is a reputable institute known for its comprehensive data science courses, experienced faculty, hands-on training, industry-relevant curriculum, and placement assistance, making it a reliable choice for pursuing a data science course.
The eligibility criteria for enrolling in the Certified Data Scientist Course offered by DataMites in Gandhinagar may vary, but typically it requires a bachelor's degree in any discipline with a basic understanding of mathematics and statistics. However, it's recommended to contact DataMites directly for the most accurate and up-to-date information regarding eligibility.
Reasons to consider a data science course offered by DataMites in Gandhinagar include their strong industry connections, practical approach to learning, comprehensive curriculum covering various data science concepts and tools, and the opportunity to gain practical experience through real-world projects and case studies. Additionally, their track record of successful placements and career support services adds value to the overall learning experience.
The duration of the course is of 8 months with 700 learning hours, including 120 hours of live online training.
Upon successful completion of the data science course in Gandhinagar, students are awarded the prestigious IABAC certification, which is globally recognized. This certification greatly enhances their prospects during job applications and internship programs, providing them with a competitive edge in the industry.
After completing the course, DataMites offers dedicated support and guidance for placements through their Placement Assistance Team (PAT). This ensures that individuals receive comprehensive assistance in finding suitable job placements, increasing their chances of securing employment opportunities.
DataMites in Gandhinagar provides a wide array of data science courses, covering a diverse range of topics such as Data Science Foundation, Data Science for Managers, Data Science Associate, Diploma in Data Science, Python for Data Science, Statistics for Data Science, Data Science Marketing, Data Science Operations, Data Science Retail, Data Science for HR, Data Science with Finance, and Data Science. This extensive selection allows individuals to choose a course that aligns with their specific interests and career goals.
DataMites is widely recognized for its team of exceptionally experienced educators specializing in data science. These instructors possess extensive expertise, relevant qualifications, and certifications, allowing them to deliver exceptional instruction. Through their wealth of experience, students are equipped with a comprehensive understanding of the subject matter.
DataMites understands the diverse preferences of students and offers flexible learning options to cater to their needs. They provide a range of choices, such as live online sessions, self-paced learning methods, and on-demand classroom training. This flexibility empowers individuals to select the learning approach that aligns with their preferences and enables them to conveniently pursue their data science education.
DataMites provides a comprehensive training approach, which is accompanied by a complimentary demo class. This demo class enables students to improve their understanding of the training process and gain insights into its various components.
Learning Through Case Study Approach
Theory → Hands-on → Case Study → Project → Model Deployment
The payment mode available for the data science course in Gandhinagar through:
The DataMites Data Science Course in Gandhinagar offers flexible pricing options. The course is available at different price points: INR 35,000 for live online training, INR 21,000 for blended learning, and INR 44,000 for on-demand classroom training.
In order to receive the participation certificate and book the certification exam, it is required to submit valid photo identification proofs such as a National ID card or a Driving license.
The salary of data scientists in India ranges from INR 11,49,482 per year according to an Indeed report.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.