Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1 : ARTIFICIAL INTELLIGENCE OVERVIEW
• Evolution Of Human Intelligence
• What Is Artificial Intelligence?
• History Of Artificial Intelligence
• Why Artificial Intelligence Now?
• Areas Of Artificial Intelligence
• AI Vs Data Science Vs Machine Learning
MODULE 2 : DEEP LEARNING INTRODUCTION
• Deep Neural Network
• Machine Learning vs Deep Learning
• Feature Learning in Deep Networks
• Applications of Deep Learning Networks
MODULE3 : TENSORFLOW FOUNDATION
• TensorFlow Structure and Modules
• Hands-On:ML modeling with TensorFlow
MODULE 4 : COMPUTER VISION INTRODUCTION
• Image Basics
• Convolution Neural Network (CNN)
• Image Classification with CNN
• Hands-On: Cat vs Dogs Classification with CNN Network
MODULE 5 : NATURAL LANGUAGE PROCESSING (NLP)
• NLP Introduction
• Bag of Words Models
• Word Embedding
• Hands-On:BERT Algorithm
MODULE 6 : AI ETHICAL ISSUES AND CONCERNS
• Issues And Concerns Around Ai
• Ai And Ethical Concerns
• Ai And Bias
• Ai:Ethics, Bias, And Trust
MODULE 1 : PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2 : PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3 : PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4 : PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
• Introduction to Statistics
• Descriptive And Inferential Statistics
• Basic Terms Of Statistics
• Types Of Data
MODULE 2 : HARNESSING DATA
• Random Sampling
• Sampling With Replacement And Without Replacement
• Cochran's Minimum Sample Size
• Types of Sampling
• Simple Random Sampling
• Stratified Random Sampling
• Cluster Random Sampling
• Systematic Random Sampling
• Multi stage Sampling
• Sampling Error
• Methods Of Collecting Data
MODULE 3 : EXPLORATORY DATA ANALYSIS
• Exploratory Data Analysis Introduction
• Measures Of Central Tendencies: Mean,Median And Mode
• Measures Of Central Tendencies: Range, Variance And Standard Deviation
• Data Distribution Plot: Histogram
• Normal Distribution & Properties
• Z Value / Standard Value
• Empherical Rule and Outliers
• Central Limit Theorem
• Normality Testing
• Skewness & Kurtosis
• Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
• Covariance & Correlation
MODULE 4 : HYPOTHESIS TESTING
• Hypothesis Testing Introduction
• P- Value, Critical Region
• Types of Hypothesis Testing
• Hypothesis Testing Errors : Type I And Type II
• Two Sample Independent T-test
• Two Sample Relation T-test
• One Way Anova Test
• Application of Hypothesis testing
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: PYTHON NUMPY PACKAGE
• Introduction to Numpy Package
• Array as Data Structure
• Core Numpy functions
• Matrix Operations, Broadcasting in Arrays
MODULE 3: PYTHON PANDAS PACKAGE
• Introduction to Pandas package
• Series in Pandas
• Data Frame in Pandas
• File Reading in Pandas
• Data munging with Pandas
MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib
• Visualization Packages (Matplotlib)
• Components Of A Plot, Sub-Plots
• Basic Plots: Line, Bar, Pie, Scatter
MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN
• Seaborn: Basic Plot
• Advanced Python Data Visualizations
MODULE 6: ML ALGO: LINEAR REGRESSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Modeling and Evaluation in Python
MODULE 7: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Modeling and Evaluation in Python
MODULE 8: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Modeling in Python
MODULE 9: ML ALGO: KNN
• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Modeling and Evaluation in Python
MODULE 1: FEATURE ENGINEERING
• Introduction to Feature Engineering
• Feature Engineering Techniques: Encoding, Scaling, Data Transformation
• Handling Missing values, handling outliers
• Creation of Pipeline
• Use case for feature engineering
MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python
MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)
• Building Blocks Of PCA
• How it works: Finding Principal Components
• Modeling PCA in Python
MODULE 4: ML ALGO: DECISION TREE
• Introduction to Decision Tree & Random Forest
• How it works
• Modeling and Evaluation in Python
MODULE 5: ENSEMBLE TECHNIQUES - BAGGING
• Introduction to Ensemble technique
• Bagging and How it works
• Modeling and Evaluation in Python
MODULE 6: ML ALGO: NAÏVE BAYES
• Introduction to Naive Bayes
• How it works: Bayes' Theorem
• Naive Bayes For Text Classification
• Modeling and Evaluation in Python
MODULE 7: GRADIENT BOOSTING, XGBOOST
• Introduction to Boosting and XGBoost
• How it works?
• Modeling and Evaluation of in Python
MODULE 1: TIME SERIES FORECASTING - ARIMA
• What is Time Series?
• Trend, Seasonality, cyclical and random
• Stationarity of Time Series
• Autoregressive Model (AR)
• Moving Average Model (MA)
• ARIMA Model
• Autocorrelation and AIC
• Time Series Analysis in Python
MODULE 2: SENTIMENT ANALYSIS
• Introduction to Sentiment Analysis
• NLTK Package
• Case study: Sentiment Analysis on Movie Reviews
MODULE 3: REGULAR EXPRESSIONS WITH PYTHON
• Regex Introduction
• Regex codes
• Text extraction with Python Regex
MODULE 4: ML MODEL DEPLOYMENT WITH FLASK
• Introduction to Flask
• URL and App routing
• Flask application – ML Model deployment
MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL
• MS Excel core Functions
• Advanced Functions (VLOOKUP, INDIRECT..)
• Linear Regression with EXCEL
• Data Table
• Goal Seek Analysis
• Pivot Table
• Solving Data Equation with EXCEL
MODULE 6: AWS CLOUD FOR DATA SCIENCE
• Introduction of cloud
• Difference between GCC, Azure,AWS
• AWS Service ( EC2 instance)
MODULE 7: AZURE FOR DATA SCIENCE
• Introduction to AZURE ML studio
• Data Pipeline
• ML modeling with Azure
MODULE 8: INTRODUCTION TO DEEP LEARNING
• Introduction to Artificial Neural Network, Architecture
• Artificial Neural Network in Python
• Introduction to Convolutional Neural Network, Architecture
• Convolutional Neural Network in Python
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• Relational Database Management System
• CRUD operations
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join
• Windows functions: Over, Partition , Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
MODULE 1: GIT INTRODUCTION
• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture
MODULE 2: GIT REPOSITORY and GitHub
• Git Repo Introduction
• Create New Repo with Init command
• Git Essentials: Copy & User Setup
• Mastering Git and GitHub
MODULE 3: COMMITS, PULL, FETCH AND PUSH
• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo
MODULE 4: TAGGING, BRANCHING AND MERGING
• Organize code with branches
• Checkout branch
• Merge branches
• Editing Commits
• Commit command Amend flag
• Git reset and revert
MODULE 5: GIT WITH GITHUB AND BITBUCKET
• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
MODULE 1: BIG DATA INTRODUCTION
MODULE 2: HDFS AND MAP REDUCE
MODULE 3: PYSPARK FOUNDATION
MODULE 4: SPARK SQL and HADOOP HIVE
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3 : DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4 : CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
MODULE 1: NEURAL NETWORKS
• Structure of neural networks
• Neural network - core concepts(Weight initialization)
• Neural network - core concepts(Optimizer)
• Neural network - core concepts(Need of activation)
• Neural network - core concepts(MSE & RMSE)
• Feed forward algorithm
• Backpropagation
MODULE 2: IMPLEMENTING DEEP NEURAL NETWORKS
• Introduction to neural networks with tf2.X
• Simple deep learning model in Keras (tf2.X)
• Building neural network model in TF2.0 for MNIST dataset
MODULE 3: DEEP COMPUTER VISION - IMAGE RECOGNITION
• Convolutional neural networks (CNNs)
• CNNs with Keras-part1
• CNNs with Keras-part2
• Transfer learning in CNN
• Flowers dataset with tf2.X(part-1)
• Flowers dataset with tf2.X(part-2)
• Examining x-ray with CNN model
MODULE 4 : DEEP COMPUTER VISION - OBJECT DETECTION
• What is Object detection
• Methods of Object Detections
• Metrics of Object detection
• Bounding Box regression
• labelimg
• RCNN
• Fast RCNN
• Faster RCNN
• SSD
• YOLO Implementation
• Object detection using cv2
MODULE 5: RECURRENT NEURAL NETWORK
• RNN introduction
• Sequences with RNNs
• Long short-term memory networks(part 1)
• Long short-term memory networks(part 2)
• Bi-directional RNN and LSTM
• Examples of RNN applications
MODULE 6: NATURAL LANGUAGE PROCESSING (NLP)
• Introduction to Natural language processing
• Working with Text file
• Working with pdf file
• Introduction to regex
• Regex part 1
• Regex part 2
• Word Embedding
• RNN model creation
• Transformers and BERT
• Introduction to GPT (Generative Pre-trained Transformer)
• State of art NLP and projects
MODULE 7: PROMPT ENGINEERING
• Introduction to Prompt Engineering
• Understanding the Role of Prompts in AI Systems
• Design Principles for Effective Prompts
• Techniques for Generating and Optimizing Prompts
• Applications of Prompt Engineering in Natural Language Processing
MODULE 8: REINFORCEMENT LEARNING
• Markov decision process
• Fundamental equations in RL
• Model-based method
• Dynamic programming model free methods
MODULE 9: DEEP REINFORCEMENT LEARNING
• Architectures of deep Q learning
• Deep Q learning
• Reinforcement Learning Projects with OpenAI Gym
MODULE 10: Gen AI
• Gan introduction, Core Concepts, and Applications
• Core concepts of GAN
• GAN applications
• Building GAN model with TensorFlow 2.X
• Introduction to GPT (Generative Pre-trained Transformer)
• Building a Question answer bot with the models on Hugging Face
MODULE 11: Gen AI
• Introduction to Autoencoder
• Basic Structure and Components of Autoencoders
• Types of Autoencoders: Vanilla, Denoising, Variational, Sparse, and Convolutional Autoencoders
• Training Autoencoders: Loss Functions, Optimization Techniques
• Applications of Autoencoders: Dimensionality Reduction, Anomaly Detection, Image
Mumbai offers a wide range of AI career opportunities across industries such as finance, healthcare, e-commerce, media, and IT. Job roles include AI Engineer, Data Scientist, Machine Learning Engineer, AI Researcher, and NLP Specialist. The city’s vibrant tech ecosystem ensures that skilled AI professionals are in constant demand.
The AI market in Mumbai is growing rapidly, with industries adopting AI for automation, predictive analytics, fraud detection, and personalized customer experiences. Startups and established companies are investing heavily in AI-driven solutions, making it one of the fastest-growing technology domains in the city.
To excel in AI, learners should have knowledge of programming languages like Python and R, understanding of machine learning algorithms, data analysis, natural language processing (NLP), computer vision, and AI tools such as TensorFlow, PyTorch, and Scikit-learn.
Learning AI in Mumbai gives you access to top institutes, hands-on training, strong placement support, and networking opportunities with industry experts. The city’s booming AI job market also ensures better career growth and competitive salaries.
AI experts in Mumbai can earn anywhere between ₹3 lakh and ₹20 lakh per year, depending on experience, skill set, and the organization. Senior professionals with specialized AI expertise can earn even higher packages.
AI course durations in Mumbai typically range from 6 months to 12 months, depending on the learning format and curriculum depth. Fees can vary from ₹50,000 to ₹2,50,000 based on the institute, certification, and additional services such as internships and placement support.
Look for an AI training institute with industry-recognized certifications, experienced trainers, practical projects, internship opportunities, and strong placement assistance. Reviews, alumni success stories, and course content should also guide your decision.
Top AI courses in Mumbai include training in tools like Python, TensorFlow, PyTorch, Keras, Scikit-learn, Jupyter Notebook, and cloud platforms such as AWS, Azure, and Google Cloud for AI model deployment.
Major industries hiring AI experts in Mumbai include banking & finance, e-commerce, healthcare, logistics, marketing, media, and IT services. Companies in these sectors are leveraging AI for automation, data-driven decision-making, and innovation.
Yes, Python is a crucial language for AI development because of its simplicity, vast library support, and community resources. Learning Python is highly recommended before or during your AI training.
The primary goals of AI training are to build a strong understanding of AI concepts, master machine learning algorithms, work with real-world datasets, develop AI applications, and prepare learners for job-ready skills.
Machine Learning is a branch of Artificial Intelligence, which concerns the ability of machines to learn from experience and subsequently improve themselves, without being influenced by another person.
An AI certification from a reputed institute validates your expertise, improves your employability, and helps you stand out in Mumbai’s competitive job market. It also demonstrates your commitment to continuous learning.
After completing AI training, you can apply for roles like AI Engineer, Data Scientist, Machine Learning Engineer, AI Analyst, and Computer Vision Specialist across multiple industries in Mumbai and beyond.
AI can seem challenging at first due to its technical nature, but with structured learning, practical exercises, and mentor guidance, it becomes much easier to master.
AI has a vast future scope with applications in robotics, autonomous systems, predictive analytics, natural language processing, and smart automation. The demand for AI professionals is expected to grow exponentially.
Machine learning is a core component of AI, and most AI courses include ML in their curriculum. However, having basic ML knowledge before starting can give you an added advantage.
Top recruiters for AI experts in India include TCS, Infosys, Wipro, Tech Mahindra, HCL Technologies, Reliance Jio, Accenture, Amazon, Google, and various AI-focused startups.
Most AI courses in Mumbai are open to graduates from any discipline with basic knowledge of mathematics and programming. However, candidates with backgrounds in computer science, engineering, or IT may find it easier to grasp advanced topics.
Yes, beginners can learn AI without prior coding experience. Many AI training programs in Mumbai start with foundational programming lessons in Python to help students get started smoothly.
AI is transforming Mumbai’s business environment through automation in finance, personalized customer experiences in retail, predictive maintenance in manufacturing, and smart healthcare solutions in hospitals.
Artificial Intelligence is present everywhere nowadays and is used across functions like Finance, Healthcare, Education, Manufacturing, Retail, Customer Service, etc. Therefore learning Artificial Intelligence will help to increase the chances of your employability in various sectors. AI is also an indispensable factor, for the reason that most of the data today are stored digitally. The potential of AI to be incorporated into data helps in making the right decisions.
The Artificial Intelligence course in Mumbai offered by DataMites helps to give you a clear picture of the role of AI in the decision-making and problem-solving process.
This Artificial Intelligence course enables you to:-
Mumbai is known for lots of business opportunities and large corporate houses adorning the city. This, in turn, contributes to new employment opportunities being created.
Learning the Artificial Intelligence course in Mumbai helps you to leverage the available opportunities and also prepares you for the challenges. Artificial Intelligence is a discipline that is influencing the present in a big way and is expected to grow in the future. Therefore by learning AI you are at the advantage of remaining well equipped in advance to cope with the changing times.
DataMites in Mumbai offers the most comprehensive Artificial Intelligence course that is aligned with the state of art industry best practices in the Artificial Intelligence domain.
Mumbai has a lot of business opportunities with large corporates gracing the city. The career opportunities in Artificial Intelligence are booming and Mumbai is no exception.
DataMites in Mumbai provides the most comprehensive Artificial Intelligence Engineer course with the following features.
DataMites caters to graduates and professionals equally. Therefore, DataMites is the best choice for anyone who wishes to become an Artificial Intelligence Engineer in Mumbai.
Mumbai, in India, is known for lots of business opportunities. It consists of many large companies, business houses, with large amounts of transactions happening every day, as a result of which there is an equally large amount of data generated daily. Also, India. is known for many recognised universities. Learning Artificial Intelligence in India will be a great opportunity for students as well as professionals.
DataMites in Mumbai provides the most comprehensive Artificial Intelligence course that is designed as per the current industry requirements. Also, the Artificial Intelligence course provided by DataMites in Mumbai is certified in collaboration with IABAC.
On completing the Artificial Intelligence course DataMites in Mumbai you will be eligible for the following job roles:-
The market for Artificial Intelligence in Mumbai is booming and is expected to grow in the future. As AI requires the mastering of various disciplines and there are only a few who are good at all of them, the one who can master all the disciplines is at a greater advantage. Career Opportunities in AI are plenty but there is a shortage of skilled AI professionals, therefore there is also a rising demand for the same. Some of the top industries in Mumbai for AI are- Banking and Finance, Information and Communication, Administration, and Support Services.
According to payscale.com the average salary of an Artificial Intelligence Engineer in Mumbai is Rs 7,30,000 per year.
India has a good number of small, medium, and large corporations. The opportunity in Artificial Intelligence in India is also plenty. As AI has shown us a way to tackle real-world complexities, the need to incorporate AI into various functions is equally important. All the present-day organisations are well aware of this and have acknowledged this to a great extent. In simple words, most companies nowadays have found a better way of tackling their day- to day problems with the help of AI.
Every company in India(Be it Small, Medium, and Large enterprises) requires AI professionals as all of them work on their data and requires some or the other AI expertise to be deployed into the tasks.
Artificial Intelligence, Machine, and Data Science contribute to one another in one or the other way. Python and R are the two programming languages that are used in the data science process. Some of the reasons, for python being the most preferred programming language in comparison to R:-
However as far as Artificial Intelligence is concerned, learning both Python and R will be advantageous.
The instructors at DataMites institute are industry experts who have a good number of years of experience in the field of Artificial Intelligence.
Enrolling in online training online is very simple. The payment can be done using your debit/credit card that includes Visa Card, MasterCard; American Express, or PayPal. You will receive the receipt after the payment is successful. You can get in touch with our educational counsellor for more information.
DataMites conducts classes for Artificial Intelligence courses both during Weekdays and Weekends. You can opt between the two according to your convenience.
DataMites conducts both morning and evening classes for Artificial Intelligence courses in Mumbai. You can opt between the two as per your convenience.
Yes. DataMites provides an online lab facility called Pro Lab. You can log in with a username to use this facility.
Yes, DataMites has partnered with many AI companies and provides live Artificial Intelligence projects to work on which helps the candidate to get exposure to the real-world working environment. DataMites provides 10 Capstone projects and 1 client project as part of the Artificial Intelligence course.
The DataMites Placement Assistance Team(PAT) helps the candidates to have an easy start in his/her career. The team offers services like Resume Building, Interview Preparation. The team will assist you in the following areas;-
DataMites provides globally recognized AI certification accredited by IABAC upon course completion.
DataMites is preferred for its expert trainers, comprehensive curriculum, hands-on projects, and strong placement support.
Yes, DataMites offers internship opportunities to provide practical industry experience during the AI course.
Yes, DataMites provides flexible EMI plans to make Artificial Intelligence training in Mumbai affordable for all learners.
Yes, DataMites offers free trial classes so prospective students can experience the training before enrolling.
The Artificial Intelligence course fee at DataMites Mumbai typically ranges between INR 70,000 and INR 1,54,000, depending on the program level.
Yes, DataMites offers placement assistance including resume building and interview preparation.
DataMites has a transparent refund policy which varies based on the timing of cancellation and course terms.
Students receive comprehensive study materials, recorded sessions, project guides, and practice datasets.
Instructors at DataMites are industry experts with extensive AI experience and strong teaching backgrounds.
Yes, the Artificial Intelligence certification in Mumbai includes hands-on live projects to build real-world skills.
The duration of the Artificial Intelligence course provided by DataMites in Mumbai is 9 months with 100 hrs of live online training conducted by industry experts.
Yes, DataMites provides recorded sessions and doubt-clearing to help students catch up on missed classes.
You will gain skills in Python programming, machine learning, deep learning, NLP, computer vision, and AI model deployment.
DataMites provides Flexi Pass, which gives you the privilege to attend unlimited batches in a year. The Flexi Pass is specific to one particular course. Therefore, if you have a Flexi Pass for a particular course of your choice, you will be able to attend any number of sessions of that course. It is to be noted that a Flexi Pass is valid for a particular period.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.