Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
MODULE 1: DATA ANALYSIS FOUNDATION
• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain
MODULE 2: CLASSIFICATION OF ANALYTICS
• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics
MODULE 3: CRIP-DM Model
• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling, Evaluation, Deploying,Monitoring
MODULE 4: UNIVARIATE DATA ANALYSIS
• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.
MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS
• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot
MODULE 6: BI-VARIATE DATA ANALYSIS
• Scatter Plots
• Regression Analysis
• Correlation Coefficients
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
MODULE 2 : HARNESSING DATA
MODULE 3 : EXPLORATORY DATA ANALYSIS
MODULE 4 : HYPOTHESIS TESTING
MODULE 1: COMPARISION AND CORRELATION ANALYSIS
• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis
MODULE 2: VARIANCE AND FREQUENCY ANALYSIS
• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis
MODULE 3: RANKING ANALYSIS
• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis
MODULE 4: BREAK EVEN ANALYSIS
• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing
MODULE 5: PARETO (80/20 RULE) ANALSYSIS
• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis
MODULE 6: Time Series and Trend Analysis
• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
MODULE 7: DATA ANALYSIS BUSINESS REPORTING
• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
MODULE 1: DATA ANALYTICS FOUNDATION
• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity
MODULE 2: OPTIMIZATION MODELS
• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity
MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION
• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel
MODULE 4: DECISION MODELING
• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool
MODULE 4: ML ALGO: KNN
• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering
MODULE 6: ML ALGO: DECISION TREE
• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool
MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool
MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
A Data Analyst course in Solapur delivers industry-aligned training with strong practical exposure. It offers affordable learning opportunities within the growing regional job market. The course is ideal for freshers and working professionals targeting Analyst careers.
The Data Analyst course duration generally ranges between 4 to 6 months. It includes structured classes, hands-on tool practice, and real-world assignments. The duration may vary based on online, blended, or classroom learning modes.
The course fees in Solapur depend on the selected training format. Fees differ for online, blended learning, and classroom programs. Many institutes also provide flexible payment plans and EMI options.
The best institute offers an industry-relevant curriculum with practical exposure. Look for certifications, experienced trainers, and placement assistance. Student reviews and alumni success help assess training quality and credibility.
The Data Analyst role is experiencing rapid growth across industries in India. Sectors like IT, finance, healthcare, and e-commerce are driving demand. India’s digital expansion ensures long-term career stability in Analyst.
Entry-level Data Analysts earn around ₹4–6 LPA in India. Mid-level professionals can earn between ₹8–12 LPA. Salaries vary based on experience, skill set, and industry domain.
The syllabus covers statistics, Excel, SQL, Python, and data visualization. It includes tools like Power BI and Tableau for insights generation. Hands-on projects ensure strong practical analytical skills development.
Popular roles include Data Analyst, Business Analyst, and Reporting Analyst. Advanced learners can move into Data Consultant and Analyst Specialist roles. Maharashtra offers strong Analyst opportunities across multiple industries.
Learning AI starts with Python and basic machine learning concepts. Focus on data preprocessing, predictive modeling, and automation techniques. Hands-on projects help apply AI-driven Analyst solutions.
Data Analysts work on sales analysis, customer behavior, and forecasting projects. Projects involve data cleaning, visualization, and dashboard creation. Real-world case studies enhance business decision-making skills.
Basic programming knowledge is helpful but not mandatory for beginners. Languages like Python and SQL improve analysis efficiency. Several tools support low-code and no-code Analyst approaches.
Top recruiters include TCS, Infosys, Accenture, Amazon, and Deloitte. Both startups and multinational companies hire Analyst professionals. Demand exists across IT, finance, retail, and healthcare sectors.
Key skills include data interpretation, statistical thinking, and problem-solving. Proficiency in Excel, SQL, Python, and visualization tools is crucial. Communication skills help translate data insights into business actions.
Data Analysts support finance, healthcare, retail, marketing, and manufacturing. They enable decision-making through trend analysis and performance tracking. Analyst improves efficiency, profitability, and strategic planning.
Yes, working professionals can easily enroll in Data Analyst programs. Flexible options like online classes and weekend batches are available. Courses are designed to balance job responsibilities and skill enhancement.
DataMites offers an industry-driven curriculum with hands-on learning. Training is delivered by certified trainers using real-world projects. Strong placement assistance makes DataMites a preferred Analyst institute.
Yes, DataMites includes internship opportunities as part of the course.
Learners gain exposure through live industry projects. Internships enhance job readiness and practical experience.
DataMites Solapur offers flexible EMI payment options. This helps learners manage course fees comfortably. EMI facilities support both students and working professionals.
DataMites follows a transparent refund policy for all programs. Refund eligibility depends on cancellation timelines and course start date. Official terms ensure learner clarity and protection.
Fees vary based on online, blended, or classroom training modes. Each format provides structured learning and hands-on exposure. Exact pricing details are shared during enrollment consultation.
The program duration is typically around 6 months. It includes training sessions, projects, and internship exposure. Placement preparation is also covered during the course.
Yes, the course includes live projects and capstone assignments. Learners work with real business datasets. Projects strengthen practical Analyst application skills.
Learners receive globally recognized certifications from IABAC®. Additional recognition comes from NASSCOM FutureSkills. These credentials validate industry-ready Analyst expertise.
Payments are accepted via credit cards, debit cards, net banking, and UPI. Eligible learners can opt for EMI payment facilities. Multiple options ensure secure and convenient transactions.
DataMites operates more than 30 offline data analytics training centres across major Indian cities in Bangalore, Pune, Hyderabad, Chennai, Mumbai, Vizag, Ahmedabad, Nagpur, Delhi, Noida, Coimbatore, Kolkata, Bhubaneswar, Chandigarh along with online and blended learning options nationwide.
The DataMites Flexi Pass allows access to multiple batches. Learners can revisit sessions for up to 1 year. It supports flexible learning for working professionals.
DataMites Institute is headquartered in Bangalore, India, serving as the central hub for curriculum development and operational excellence.
Address: Bajrang House, 7th Mile, C-25, Bengaluru – Chennai Hwy, Kudlu Gate, Garvebhavi Palya, Bengaluru, Karnataka 560068
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.