Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: DATA ANALYSIS FOUNDATION
• Data Analysis Introduction
• Data Preparation for Analysis
• Common Data Problems
• Various Tools for Data Analysis
• Evolution of Analytics domain
MODULE 2: CLASSIFICATION OF ANALYTICS
• Four types of the Analytics
• Descriptive Analytics
• Diagnostics Analytics
• Predictive Analytics
• Prescriptive Analytics
• Human Input in Various type of Analytics
MODULE 3: CRIP-DM Model
• Introduction to CRIP-DM Model
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling, Evaluation, Deploying,Monitoring
MODULE 4: UNIVARIATE DATA ANALYSIS
• Summary statistics -Determines the value’s center and spread.
• Measure of Central Tendencies: Mean, Median and Mode
• Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
• Frequency table -This shows how frequently various values occur.
• Charts -A visual representation of the distribution of values.
MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS
• Line Chart
• Column/Bar Chart
• Waterfall Chart
• Tree Map Chart
• Box Plot
MODULE 6: BI-VARIATE DATA ANALYSIS
• Scatter Plots
• Regression Analysis
• Correlation Coefficients
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1 : OVERVIEW OF STATISTICS
MODULE 2 : HARNESSING DATA
MODULE 3 : EXPLORATORY DATA ANALYSIS
MODULE 4 : HYPOTHESIS TESTING
MODULE 1: COMPARISION AND CORRELATION ANALYSIS
• Data comparison Introduction,
• Performing Comparison Analysis on Data
• Concept of Correlation
• Calculating Correlation with Excel
• Comparison vs Correlation
• Hands-on case study : Comparison Analysis
• Hands-on case study Correlation Analysis
MODULE 2: VARIANCE AND FREQUENCY ANALYSIS
• Variance Analysis Introduction
• Data Preparation for Variance Analysis
• Performing Variance and Frequency Analysis
• Business use cases for Variance Analysis
• Business use cases for Frequency Analysis
MODULE 3: RANKING ANALYSIS
• Introduction to Ranking Analysis
• Data Preparation for Ranking Analysis
• Performing Ranking Analysis with Excel
• Insights for Ranking Analysis
• Hands-on Case Study: Ranking Analysis
MODULE 4: BREAK EVEN ANALYSIS
• Concept of Breakeven Analysis
• Make or Buy Decision with Break Even
• Preparing Data for Breakeven Analysis
• Hands-on Case Study: Manufacturing
MODULE 5: PARETO (80/20 RULE) ANALSYSIS
• Pareto rule Introduction
• Preparation Data for Pareto Analysis,
• Performing Pareto Analysis on Data
• Insights on Optimizing Operations with Pareto Analysis
• Hands-on case study: Pareto Analysis
MODULE 6: Time Series and Trend Analysis
• Introduction to Time Series Data
• Preparing data for Time Series Analysis
• Types of Trends
• Trend Analysis of the Data with Excel
• Insights from Trend Analysis
MODULE 7: DATA ANALYSIS BUSINESS REPORTING
• Management Information System Introduction
• Various Data Reporting formats
• Creating Data Analysis reports as per the requirements
MODULE 1: DATA ANALYTICS FOUNDATION
• Business Analytics Overview
• Application of Business Analytics
• Benefits of Business Analytics
• Challenges
• Data Sources
• Data Reliability and Validity
MODULE 2: OPTIMIZATION MODELS
• Predictive Analytics with Low Uncertainty;Case Study
• Mathematical Modeling and Decision Modeling
• Product Pricing with Prescriptive Modeling
• Assignment 1 : KERC Inc, Optimum Manufacturing Quantity
MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION
• Mathematics behind Linear Regression
• Case Study : Sales Promotion Decision with Regression Analysis
• Hands on Regression Modeling in Excel
MODULE 4: DECISION MODELING
• Predictive Analytics with High Uncertainty
• Case Study-Monte Carlo Simulation
• Comparing Decisions in Uncertain Settings
• Trees for Decision Modeling
• Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Hands-on Linear Regression with ML Tool
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression;
• Classification & Sigmoid Curve
• Hands-on Logistics Regression with ML Tool
MODULE 4: ML ALGO: KNN
• Introduction to KNN; Nearest Neighbor
• Regression with KNN
• Hands-on: KNN with ML Tool
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• Introduction to KMeans and How it works
• Hands-on: K Means Clustering
MODULE 6: ML ALGO: DECISION TREE
• Decision Tree and How it works
• Hands-on: Decision Tree with ML Tool
MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Hands-on: SVM with ML Tool
MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN, How It Works
• Back propagation, Gradient Descent
• Hands-on: ANN with ML Tool
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join, Outer Join
• Left join, Right Join
• Self Join, Cross join
• Windows Functions: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
Data analytics is the practice of analysing datasets to make inferences about the information they have. Using data analytics approaches, you can take unstructured data and find patterns to draw out insightful conclusions.
Anyone interested in learning more about Data Analytics and Data Science is welcome to enrol in the course. The minimum requirement for a postgraduate Data Analytics Programme in Ahmedabad is a Bachelor's degree from a recognised university with at least 50% overall or the equivalent, ideally in the fields of science or computer science.
Top firms today place a high priority on data analytics.
Expanding employment possibilities
Professionals in data analytics are earning more money.
There is big data analytics everywhere.
You will have a variety of job titles to pick from and be in charge of all corporate decisions.
One of the most sought-after careers in 2022 is data analysis. India is the second major centre for data-related employment after the United States. Depending on the training level you want, there will be a difference in cost. The cost of data analytics training might be anything between 30,000 and 100,000 Indian rupees.
While a degree isn't necessarily necessary for a data analyst position, getting the necessary certification from a reputable organisation is essential. The skills required for success in data analytics can be learned in anywhere between six weeks and two years. 4 months of training can be a great method to master data analytics and become well-versed. The vast variation is explained by the fact that there are numerous unique job roles in data analytics.
Every industry uses data analysts, and they have a variety of job titles. Retail, healthcare, banking & finance, transportation, education, construction, and technology are examples of typical sectors. You can work in the fields of data analytics, data science, business intelligence analysis, data engineering, quantitative analysis, data consulting, operations analysis, marketing analysis, project management, information technology systems analysis, and transportation logistics, to mention a few.
The essential function of modern firms is data analysis. Since no single data analytics tool can meet all needs, selecting the best one might be difficult. Some of the essential instruments used for data analytics are Excel, Advanced Excel, Tableau, SQL, Power BI, Basics of R, and Python.
Technical skills like data analysis, statistical knowledge, data storytelling, communication, and problem-solving would be advantageous for learning Data Analytics. Business intuition and strategic thinking are also considered important for data analysts that often partner with business stakeholders.
The national average salary for a Data Analyst is USD 69,517 per year in the United States. (Glassdoor)
The national average salary for a Data Analyst in the UK is £36,535 per annum. (Glassdoor)
The national average salary for a Data Analyst in India is INR 6,00,000 per year. (Glassdoor)
The national average salary for a Data Analyst in Australia is AUD 85,000 per year. (Glassdoor)
The national average salary for a Data Analyst in Germany is 46,328 EUR per annum. (Payscale)
The national average salary for a Data Analyst in Switzerland is CHF 95,626 per year. (Glassdoor)
The national average salary for a Data Analyst in Canada is C$58,843 per year. (Payscale)
The national average salary for a Data Analyst in UAE is AED 106,940 per year. (Payscale)
The national average salary for a Data Analyst in Saudi Arabia is SAR 95,960 per year. (Payscale.com)
The national average salary for a Data Analyst in South Africa is ZAR 286,090 per year. (Payscale.com)
Some of the most sought-after specialists worldwide are skilled data analysts. Data analysts command high pay and top benefits, even at the entry-level, due to the high demand for their services and the scarcity of qualified candidates. According to Payscale, a data analyst's average salary in Ahmedabad is 4,30,000 and glassdoor revealed that a data analyst in Ahmedabad earns an average amount of 3,12,706 LPA!
The ideal college for you, if you want to pursue a career in analytics, is DataMites. The primary mentors are knowledgeable professionals who are industry-oriented, and the course curriculum is well-planned. We provide projects and internship possibilities for practical experience! The finest educational setting for you if you want to work in the analytics sector is DataMites. The primary mentors are knowledgeable and dedicated to the profession, and the course material is well-developed. Projects and internship possibilities are available for professional skills!
The phrase "data analytics" has become more popular today due to the rise in data generation. As the curriculum is designed to train applicants from level 1, there are no formal prerequisites for the DataMites Data Analytics Course. However, having prior understanding of programming languages, databases, data structures, mathematics, and algorithms will only be advantageous.
The Certified Data Analyst Course, which validates your ability to confidently evaluate data using a variety of technologies, is the highest accreditation in data analytics. The ability to handle data, perform exploratory research, understand the fundamentals of analytics, and visualise, present, and elaborate on your results are all skills that are demonstrated by certification. The respected Jain University and IABAC also accept the DataMites CDA Course.
Your greatest option in the field is the DataMites data analyst certification course in Ahmedabad. Our data analytics course provides you with tangible proof that you are qualified to help companies, including well-known multinationals, interpret the data at hand. It is evident that you are qualified to carry out the responsibilities of a particular employment role in accordance with industry standards, as opposed to a data analytics certificate.
Both freshmen and undergraduate students may enrol in the course. Following a profession as a data analyst will be the best choice for you if you want to go from an IT profile to a business profile. You will have a decent chance of succeeding in this sector if you have any potential for coding and IT skills. DataMites Data Analytics Courses in Ahmedabad are also open to non-IT professionals working in industries like human resources, banking, marketing, and sales, among others.
For roles as a data scientist and analyst, organisations do indeed hire recent graduates. In the majority of cases, post-graduation or expertise are not required for entry-level analytics positions. In some firms, an engineering degree is the only requirement, and it doesn't even matter what stream it is from. Your aptitude, communication abilities, and critical thinking are the only things these companies are interested in.
The International Association of Business Analytics Certifications has granted DataMitesTM its accreditation as a global institute for data science (IABAC).
We have roughly trained 50,000+ candidates.
The three-phase learning process was painstakingly created to deliver the greatest instruction possible.
Participate in practical projects and really useful case studies.
Obtain the worldwide IABAC and JainX Data Analytics Certification.
Help with internships and employment
The cost of Data Analytics Training in Ahmedabad at DataMites will be around 42,000 INR.
In a data-driven environment, there are several benefits to completing data analytics training and being a certified data analytics specialist. You will receive 6 months of data analytics training at DataMites.
You should definitely finish the DataMites Certified Data Analyst Training in Ahmedabad if you're thinking about working as a data analyst. Our programme promises to offer the knowledge, assurance, and credentials necessary to start a career as a data analyst from scratch.
One of the top data analytics programmes offered by DataMites is the Certified Data Analyst curriculum, which has been accredited by the IABAC and Jain University international recognised agencies, whose credentials you would obtain after completing the course. The best way to start a career in data analytics is to obtain the DataMites Certified Data Analyst Course in Ahmedabad.
You have a variety of learning options with DataMites, including data analytics training online in Ahmedabad, self-study courses, and classroom training in data analytics. Every training session is designed to help participants flourish in the field.
Data analytics has grown to be a large field, so we want to develop skilled workers in the domain. Our instructors at DataMites are highly knowledgeable and have hands-on experience in the data field, so they can provide the finest learning environment for your upcoming big move.
Candidates may attend sessions from Datamites for a period of three months pertaining to any query or revision you wish to clear with our Flexi-Pass for Data Analytics Certification Training in Ahmedabad.
Your IABAC® certification and JainX certification, which provide global recognition of the essential abilities and pave the road for your future employment in the industry, will be given to you once you have been accredited by IABAC and Jain University.
Without a doubt, we'll give you a certificate of completion for your data analytics course in Ahmedabad after it's through.
Yes, we do have demo sessions that are held for free and give prospective students a general summary of what the upcoming course would entail. You are welcome to attend these sessions to gain an idea of what the training will include before deciding whether to continue.
You shouldn't be bothered about that. Simply get in touch with your trainers about it and arrange a class that works with your schedule. Every session of the online data analytics courses in Ahmedabad will be recorded and uploaded, allowing you to quickly catch up on anything you missed at your own pace and comfort. Learning data analytics has never been simpler, in fact!
Yes, after the course is over, DataMites has a specialised Placement Assistance Team (PAT) that will help you find a job and prepare you for interviews.
We take payments using; (Ahmedabad)
Cheque
Cash
Credit Card
Visa
Master Card
American Express
PayPal
Net Banking
Debit Card
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.