Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: DATA SCIENCE ESSENTIALS
• Introduction to Data Science
• Evolution of Data Science
• Big Data Vs Data Science
• Data Science Terminologies
• Data Science vs AI/Machine Learning
• Data Science vs Analytics
MODULE 2: DATA SCIENCE DEMO
• Business Requirement: Use Case
• Data Preparation
• Machine learning Model building
• Prediction with ML model
• Delivering Business Value.
MODULE 3: ANALYTICS CLASSIFICATION
• Types of Analytics
• Descriptive Analytics
• Diagnostic Analytics
• Predictive Analytics
• Prescriptive Analytics
• EDA and insight gathering demo in Tableau
MODULE 4: DATA SCIENCE AND RELATED FIELDS
• Introduction to AI
• Introduction to Computer Vision
• Introduction to Natural Language Processing
• Introduction to Reinforcement Learning
• Introduction to GAN
• Introduction to Generative Passive Models
MODULE 5: DATA SCIENCE ROLES & WORKFLOW
• Data Science Project workflow
• Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
• Data Science Project stages.
MODULE 6: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS
• Data Science in Finance and Banking
• Data Science in Retail
• Data Science in Health Care
• Data Science in Logistics and Supply Chain
• Data Science in Technology Industry
• Data Science in Manufacturing
• Data Science in Agriculture
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python Variables
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• Basics of List
• List: Object, methods
• Tuple: Object, methods
• Sets: Object, methods
• Dictionary: Object, methods
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functions
MODULE 1: OVERVIEW OF STATISTICS
• Introduction to Statistics
• Descriptive And Inferential Statistics
• Basic Terms Of Statistics
• Types Of Data
MODULE 2: HARNESSING DATA
• Random Sampling
• Sampling With Replacement And Without Replacement
• Cochran's Minimum Sample Size
• Types of Sampling
• Simple Random Sampling
• Stratified Random Sampling
• Cluster Random Sampling
• Systematic Random Sampling
• Multi stage Sampling
• Sampling Error
• Methods Of Collecting Data
MODULE 3: EXPLORATORY DATA ANALYSIS
• Exploratory Data Analysis Introduction
• Measures Of Central Tendencies: Mean,Median And Mode
• Measures Of Central Tendencies: Range, Variance And Standard Deviation
• Data Distribution Plot: Histogram
• Normal Distribution & Properties
• Z Value / Standard Value
• Empirical Rule and Outliers
• Central Limit Theorem
• Normality Testing
• Skewness & Kurtosis
• Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
• Covariance & Correlation
MODULE 4: HYPOTHESIS TESTING
• Hypothesis Testing Introduction
• P- Value, Critical Region
• Types of Hypothesis Testing
• Hypothesis Testing Errors : Type I And Type II
• Two Sample Independent T-test
• Two Sample Relation T-test
• One Way Anova Test
• Application of Hypothesis testing
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• Clustering, Classification And Regression
• Supervised Vs Unsupervised
MODULE 2: PYTHON NUMPY PACKAGE
• Introduction to Numpy Package
• Array as Data Structure
• Core Numpy functions
• Matrix Operations, Broadcasting in Arrays
MODULE 3: PYTHON PANDAS PACKAGE
• Introduction to Pandas package
• Series in Pandas
• Data Frame in Pandas
• File Reading in Pandas
• Data munging with Pandas
MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib
• Visualization Packages (Matplotlib)
• Components Of A Plot, Sub-Plots
• Basic Plots: Line, Bar, Pie, Scatter
MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN
• Seaborn: Basic Plot
• Advanced Python Data Visualizations
MODULE 6: ML ALGO: LINEAR REGRESSSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Modeling and Evaluation in Python
MODULE 7: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Modeling and Evaluation in Python
MODULE 8: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Modeling in Python
MODULE 9: ML ALGO: KNN
• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Modeling and Evaluation in Python
MODULE 1: FEATURE ENGINEERING
• Introduction to Feature Engineering
• Feature Engineering Techniques: Encoding, Scaling, Data Transformation
• Handling Missing values, handling outliers
• Creation of Pipeline
• Use case for feature engineering
MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python
MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)
• Building Blocks Of PCA
• How it works: Finding Principal Components
• Modeling PCA in Python
MODULE 4: ML ALGO: DECISION TREE
• Introduction to Decision Tree & Random Forest
• How it works
• Modeling and Evaluation in Python
MODULE 5: ENSEMBLE TECHNIQUES - BAGGING
• Introduction to Ensemble technique
• Bagging and How it works
• Modeling and Evaluation in Python
MODULE 6: ML ALGO: NAÏVE BAYES
• Introduction to Naive Bayes
• How it works: Bayes' Theorem
• Naive Bayes For Text Classification
• Modeling and Evaluation in Python
MODULE 7: GRADIENT BOOSTING, XGBOOST
• Introduction to Boosting and XGBoost
• How it works?
• Modeling and Evaluation of in Python
MODULE 1: TIME SERIES FORECASTING - ARIMA
• What is Time Series?
• Trend, Seasonality, cyclical and random
• Stationarity of Time Series
• Autoregressive Model (AR)
• Moving Average Model (MA)
• ARIMA Model
• Autocorrelation and AIC
• Time Series Analysis in Python
MODULE 2: SENTIMENT ANALYSIS
• Introduction to Sentiment Analysis
• NLTK Package
• Case study: Sentiment Analysis on Movie Reviews
MODULE 3: REGULAR EXPRESSIONS WITH PYTHON
• Regex Introduction
• Regex codes
• Text extraction with Python Regex
MODULE 4: ML MODEL DEPLOYMENT WITH FLASK
• Introduction to Flask
• URL and App routing
• Flask application – ML Model deployment
MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL
• MS Excel core Functions
• Advanced Functions (VLOOKUP, INDIRECT..)
• Linear Regression with EXCEL
• Data Table
• Goal Seek Analysis
• Pivot Table
• Solving Data Equation with EXCEL
MODULE 6: AWS CLOUD FOR DATA SCIENCE
• Introduction of cloud
• Difference between GCC, Azure, AWS
• AWS Service ( EC2 instance)
MODULE 7: AZURE FOR DATA SCIENCE
• Introduction to AZURE ML studio
• Data Pipeline
• ML modeling with Azure
MODULE 8: INTRODUCTION TO DEEP LEARNING
• Introduction to Artificial Neural Network, Architecture
• Artificial Neural Network in Python
• Introduction to Convolutional Neural Network, Architecture
• Convolutional Neural Network in Python
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• Relational Database Management System
• CRUD operations
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner Join, Outer Join
• Left Join, Right Join
• Self Join, Cross join
• Windows function: Over, Partition, Rank
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7 : DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
MODULE 1: GIT INTRODUCTION
• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture
MODULE 2: GIT REPOSITORY and GitHub
• Git Repo Introduction
• Create New Repo with Init command
• Git Essentials: Copy & User Setup
• Mastering Git and GitHub
MODULE 3: COMMITS, PULL, FETCH AND PUSH
• Code Commits
• Pull, Fetch and Conflicts resolution
• Pushing to Remote Repo
MODULE 4: TAGGING, BRANCHING AND MERGING
• Organize code with branches
• Checkout branch
• Merge branches
• Editing Commits
• Commit command Amend flag
• Git reset and revert
MODULE 5: GIT WITH GITHUB AND BITBUCKET
• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2 : HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners,
• Combiners, Shuffle, and Sort
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
MODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom Hierarchies
MODULE 2: POWER-BI BASICS
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTION
MODULE 3 : DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing Values
MODULE 4: CONNECTING TO VARIOUS DATA SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model
Data science is an interdisciplinary field that involves extracting insights and knowledge from data through various techniques such as statistics, machine learning, and data visualization. It combines elements of mathematics, statistics, computer science, and domain expertise to analyze and interpret complex data sets, ultimately enabling data-driven decision-making.
Learning data science is crucial because it equips individuals with the skills and knowledge to extract valuable insights from vast amounts of data. With data being generated at an unprecedented rate, organizations across industries are increasingly relying on data science to make informed business decisions, optimize processes, and gain a competitive edge.
To become a data scientist, you need a combination of technical and soft skills. Technical skills include proficiency in programming languages (such as Python or R), statistical analysis, machine learning, data visualization, and database querying. Soft skills encompass critical thinking, problem-solving, communication, and domain knowledge in the area you wish to apply data science.
To learn data science effectively, it is recommended to follow a structured approach. Start with a strong foundation in mathematics and statistics, then learn programming languages commonly used in data science, such as Python or R. Gain hands-on experience by working on real-world projects, participate in online courses or bootcamps, and explore relevant books, tutorials, and resources. Continuous practice, staying updated with industry trends, and joining data science communities can also enhance your learning journey.
Data scientists often face challenges such as accessing and cleaning data, dealing with missing or inconsistent data, managing large and complex datasets, selecting appropriate algorithms for analysis, and interpreting the results accurately. They may also encounter challenges related to communication with non-technical stakeholders and keeping up with the rapid advancements in the field.
The cost of a data science course in Agra ranges from INR 40,000 to INR 50,000 depending on the institute, course duration, and curriculum.
The eligibility criteria for learning a data science course can vary depending on the institute or program. Generally, a strong foundation in mathematics and statistics is beneficial. Many data science courses are open to individuals with a background in computer science, engineering, or a related field. However, some courses may also accept candidates from diverse backgrounds who demonstrate an aptitude for data science.
The scope of data science is vast and expanding across various industries. With the increasing availability of data and the need to extract meaningful insights, data scientists are in high demand. They can find opportunities in sectors such as finance, healthcare, e-commerce, marketing, telecommunications, and many more. The scope includes roles such as data analysts, data scientists, machine learning engineers, and data engineers.
A data science certification can provide several benefits. It validates your knowledge and skills in data science, making you more competitive in the job market. It demonstrates your commitment to continuous learning and professional development. Certifications can also help you gain credibility with employers and increase your chances of securing data science-related roles or advancing in your career.
Yes, there is a significant demand for data science courses. As the importance of data-driven decision-making grows across industries, there is an increasing need for professionals with data science skills.
Yes, SQL (Structured Query Language) is an important skill for data scientists. It is commonly used to retrieve, manipulate, and analyze data stored in relational databases. SQL allows data scientists to extract relevant information, perform data transformations, and create new tables or views for analysis. Proficiency in SQL can greatly enhance a data scientist's ability to work with data efficiently.
The career outlook for a fresher in data science is promising. With the increasing demand for data-driven decision-making, there is a need for skilled data scientists. As a fresher, you can start your career as a data analyst, junior data scientist, or data engineer. With time and experience, you can progress to more senior roles and take on responsibilities such as developing machine learning models, leading data science projects, and making strategic data-driven decisions.
Several top companies across industries are actively hiring data science freshers. Some notable examples include technology giants like Google, Microsoft, Amazon, Facebook, and Apple. Additionally, consulting firms like Deloitte, Accenture, and McKinsey, as well as financial institutions, healthcare organizations, e-commerce companies, and startups, are also hiring data science talent.
Yes, statistics is a fundamental component of data science. Understanding statistical concepts and techniques is crucial for analyzing and interpreting data accurately. Data scientists use statistical methods to summarize and describe data, identify patterns and trends, test hypotheses, and make predictions. Proficiency in statistics enables data scientists to draw meaningful insights from data and make informed decisions.
DataMites offers a range of data science courses, including:
CDS can refer to multiple things in different contexts. In the context of data science, CDS stands for "Certified Data Scientist." It may refer to a certification offered by a particular organization or institute, validating the skills and knowledge of an individual in the field of data science. However, without specific information, it is challenging to provide a more precise answer.
The Data Science course offered by DataMites in Agra is a comprehensive program that encompasses essential topics, hands-on experience through real-world projects, and industry-recognized certifications. It is an excellent option for individuals who are looking to succeed and thrive in the field of Data Science.
The Certified Data Scientist Course provided by DataMites in Agra welcomes individuals who possess a solid background in mathematics and programming, as well as those with prior experience in statistics, engineering, or related disciplines. This inclusivity makes the program ideal for a diverse range of participants who aspire to build a successful career in the field of Data Science.
Opting for the data science course offered by DataMites in Agra can be advantageous due to its all-encompassing training, hands-on experience gained from real-world projects, and industry-acknowledged certifications. This course equips individuals with the essential skills and knowledge required to thrive in the data science industry.
The course spans over 8 months and includes 700 hours of learning, with an additional 120 hours of live online training.
Yes, after completion of the data science course in Agra, the students are certified with globally recognized IABAC certification which helps them during job and internship programs.
Upon course completion, DataMites provides dedicated support and guidance for placements through their Placement Assistance Team (PAT). This ensures that individuals receive comprehensive assistance in securing employment opportunities, enhancing their chances of finding suitable job placements.
DataMites offers a diverse range of data science courses in Agra, including Data Science Foundation, Data Science for Managers, Data Science Associate, Diploma in Data Science, Python for Data Science, Statistics for Data Science, Data Science Marketing, Data Science Operations, Data Science Retail, Data Science for HR, Data Science with Finance, and Data Science.
DataMites is renowned for its team of highly experienced educators in the field of data science. These instructors possess extensive expertise, along with the necessary qualifications and certifications. With their wealth of experience, they provide exceptional instruction, enabling students to gain a comprehensive understanding of the subject matter.
DataMites offers flexible learning options to cater to the preferences of students. They provide a variety of choices, including live online sessions, self-paced learning methods, and on-demand classroom training. This flexibility allows individuals to select the learning approach that best suits their needs and enables them to conveniently pursue their data science education.
DataMites offers an overview of its training approach and provides a complimentary demo class, allowing students to enhance their understanding of the training process and its components.
Learning Through Case Study Approach
Theory → Hands-on → Case Study → Project → Model Deployment
The payment mode available for the data science course in Agra through:
DataMites Data Science Course in Agra is available at different price points: INR 35,000 for live online training, INR 21,000 for blended learning, and INR 44,000 for on-demand classroom training.
Yes, To issue the participation certificate and book the certification exam, it is necessary to provide photo identification proofs such as a National ID card or a Driving license.
According to an Indeed report, the salary of data scientists in India ranges from INR 11,49,482 per year.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.