DATA SCIENCE CERTIFICATION AUTHORITIES

Data Science Course Features

DATA SCIENCE COURSE LEAD MENTORS

DATA SCIENCE COURSE FEE IN AGRA

Live Virtual

Instructor Led Live Online

110,000
59,451

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Live Online Training
  • 25 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

66,000
34,951

  • Self Learning + Live Mentoring
  • IABAC® & NASSCOM® Certification
  • 1 Year Access To Elearning
  • 25 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Leaner assistance and support

Classroom

In - Person Classroom Training

110,000
64,451

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Classroom Sessions
  • 25 Capstone & 1 Client Project
  • Cloud Lab Access
  • Internship + Job Assistance

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA SCIENCE ONLINE CLASSES IN AGRA

BEST DATA SCIENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA SCIENCE COURSE

Why DataMites Infographic

SYLLABUS OF DATA SCIENCE COURSE IN AGRA

MODULE 1: DATA SCIENCE ESSENTIALS 

 • Introduction to Data Science
 • Evolution of Data Science
 • Big Data Vs Data Science
 • Data Science Terminologies
 • Data Science vs AI/Machine Learning
 • Data Science vs Analytics

MODULE 2: DATA SCIENCE DEMO

 • Business Requirement: Use Case
 • Data Preparation
 • Machine learning Model building
 • Prediction with ML model
 • Delivering Business Value.

MODULE 3: ANALYTICS CLASSIFICATION 

 • Types of Analytics
 • Descriptive Analytics
 • Diagnostic Analytics
 • Predictive Analytics
 • Prescriptive Analytics
 • EDA and insight gathering demo in Tableau

MODULE 4: DATA SCIENCE AND RELATED FIELDS

 • Introduction to AI
 • Introduction to Computer Vision
 • Introduction to Natural Language Processing
 • Introduction to Reinforcement Learning
 • Introduction to GAN
 • Introduction to Generative Passive Models

MODULE 5: DATA SCIENCE ROLES & WORKFLOW

 • Data Science Project workflow
 • Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
 • Data Science Project stages.

MODULE 6: MACHINE LEARNING INTRODUCTION

 • What Is ML? ML Vs AI
 • ML Workflow, Popular ML Algorithms
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS

 • Data Science in Finance and Banking
 • Data Science in Retail
 • Data Science in Health Care
 • Data Science in Logistics and Supply Chain
 • Data Science in Technology Industry
 • Data Science in Manufacturing
 • Data Science in Agriculture

MODULE 1: PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1: OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2: HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3: EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empirical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4: HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

 

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2:  PYTHON NUMPY  PACKAGE 

 • Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3:  PYTHON PANDAS PACKAGE 

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1: FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4:  ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING 

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7: GRADIENT BOOSTING, XGBOOST

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python 

MODULE 2: SENTIMENT ANALYSIS 

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3: REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4:  ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure, AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8:  INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION 

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

MODULE 2:  SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS 

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL) 

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS 

 • Inner Join, Outer Join
 • Left Join, Right Join
 • Self Join, Cross join
 • Windows function: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES 

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

MODULE 7 : DOCUMENT DB/NO-SQL DB 

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

 • Code Commits
 • Pull, Fetch and Conflicts resolution
 • Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

 • Organize code with branches
 • Checkout branch
 • Merge branches
 • Editing Commits
 • Commit command Amend flag
 • Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET

 • Creating GitHub Account
 • Local and Remote Repo
 • Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

 • Big Data Overview
 • Five Vs of Big Data
 • What is Big Data and Hadoop
 • Introduction to Hadoop
 • Components of Hadoop Ecosystem
 • Big Data Analytics Introduction

MODULE 2 : HDFS AND MAP REDUCE 

 • HDFS – Big Data Storage
 • Distributed Processing with Map Reduce
 • Mapping and reducing stages concepts
 • Key Terms: Output Format, Partitioners,
 • Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

 • PySpark Introduction
 • Spark Configuration
 • Resilient distributed datasets (RDD)
 • Working with RDDs in PySpark
 • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

 • Introducing Spark SQL
 • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2:  POWER-BI BASICS

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES 

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES 

• Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

OFFERED DATA SCIENCE COURSES IN AGRA

DATA SCIENCE COURSE REVIEWS

ABOUT DATA SCIENTIST TRAINING IN AGRA

Recognized globally for its exceptional training programs, DataMites offers comprehensive solutions tailored to meet the needs of aspiring data scientists. With a focus on practical learning, real-world projects, and robust career support, DataMites stands out as a trusted name for data science courses in Agra and data science courses with placements.

DataMites proudly offers its Certified Data Scientist Course in Agra, a flagship program accredited by IABAC and NASSCOM FutureSkills, meticulously designed to align with global industry standards. This extensive 8-month program is available in both online and offline formats to cater to diverse learning preferences. The on-demand offline data science course in Agra is delivered at well-equipped centers, combining interactive classroom sessions with hands-on training. The curriculum features live projects, an internship program, and practical exposure, making it ideal for freshers and working professionals alike. Additionally, students benefit from dedicated support in resume building, interview preparation, and placement assistance, ensuring a seamless transition into the data science job market.

Agra, while historically celebrated for its architectural marvels, is witnessing significant growth in its IT sector, transforming into an emerging hub for technology and education. According to recent industry reports, the Indian IT sector is projected to grow at a compound annual growth rate (CAGR) of 8.4% from 2021 to 2026, with smaller cities like Agra contributing increasingly to this expansion. The city now hosts a growing number of startups and IT companies focusing on software development, digital marketing, and analytics services. This burgeoning industry creates a favorable environment for educational programs, especially in data science, enabling students to align their skills with industry demands.

In addition to Agra, neighboring cities such as Noida, Gurugram, and Jaipur bolster the region's IT ecosystem. Noida and Gurugram, part of the National Capital Region (NCR), are established IT hubs housing global companies like Infosys, TCS, and IBM, while Jaipur has gained recognition for its thriving tech startups and IT parks. These cities provide excellent networking opportunities and career prospects for data science professionals. Agra's proximity to these hubs further enhances its appeal, offering students and professionals access to a wider range of opportunities in the evolving tech landscape.

Why Agra is the Right Choice for Data Science?
Agra, celebrated worldwide for its historical significance, is quickly emerging as a hub for educational and professional opportunities. Here’s why Agra is an excellent city to pursue data science training:
1. Emerging IT Sector
Agra’s growing IT industry is creating numerous opportunities for data science professionals. Many tech companies and startups are recognizing the need for data-driven insights, driving the demand for skilled data analysts and scientists.
2. Expanding Job Market
The demand for data scientists in Agra is on the rise. Job portals list numerous openings for roles such as Data Analysts, Business Intelligence Analysts, Machine Learning Engineers, and AI Specialists. The city offers competitive salaries, with data science professionals earning lucrative packages.
3. Affordable Living Costs
Compared to metropolitan cities like Delhi or Bangalore, Agra offers a cost-effective lifestyle. This makes it an attractive option for students and professionals pursuing data science courses in Agra online or offline.
4. Academic Environment
Agra’s strong academic foundation, bolstered by its universities and research institutions, nurtures a culture of continuous learning. This makes the city a promising destination for pursuing advanced certifications and training programs, including data science certifications in Agra.
5. Strategic Location
Agra’s proximity to major cities like Delhi and its well-connected transportation network make it a strategic hub for education and employment. The city’s unique blend of tradition and modernity provides an inspiring environment for learning.

Career Opportunities and Essential Skills in Data Science
The demand for data science expertise in Agra spans across industries such as healthcare, retail, finance, and technology. Key job roles include Data Scientist, Data Analyst, Machine Learning Engineer, AI Specialist, and Business Intelligence Analyst. Professionals in these roles are expected to analyze complex datasets, build predictive models, and deliver actionable insights that drive decision-making.
To emerge in Agra’s competitive job market, aspiring data scientists must develop a solid foundation in essential technical and soft skills. Key technical skills include:
1. Programming Languages: Strong knowledge of Python or R for data processing and analysis.
2. Machine Learning: Expertise in algorithms like Linear Regression, Neural Networks, and Decision Trees.
3. Data Visualization: Hands-on experience with tools such as Tableau or Power BI to create compelling dashboards.
4. Big Data Tools: Knowledge of Hadoop, Spark, and PySpark for managing large-scale datasets.
5. SQL and Database Management: Essential for data extraction and manipulation.
6. Statistics and Mathematics: Crucial for developing data models and interpreting results.
Soft skills like critical thinking, problem-solving, and clear communication are just as essential. These skills enable professionals to present their findings in a clear and actionable manner to stakeholders.

Why Choose DataMites Data Science Course in Agra?
1. Global Recognition
DataMites provides certifications accredited by renowned organizations like IABAC and NASSCOM FutureSkills, ensuring that learners gain credentials recognized globally.
2. Expert Faculty
The training is delivered by industry veterans, including AI expert Ashok Veda, who bring real-world experience to the classroom.
3. Flexible Learning Options
Students can choose between online data science courses in Agra or on-demand offline classes at state-of-the-art centers, catering to diverse learning preferences.
4. Real-World Projects
The curriculum includes 20 capstone projects and one client project, providing learners with hands-on experience that mirrors real-world challenges.
5. Dedicated Placement Assistance
DataMites offers robust placement support through its Placement Assistance Team (PAT), helping students secure roles in top companies.

Innovative 3-Phase Learning Approach
DataMites employs a structured 3-Phase Learning Methodology to ensure an immersive and impactful learning experience:
Phase 1: Pre-Course Preparation
Learners start with high-quality video tutorials and study materials to build a foundational understanding of data science concepts.
Phase 2: Comprehensive Training
This stage involves 20 hours of training each week for a duration of three months. Students can choose between live online sessions or offline data science courses in Agra. The curriculum focuses on practical learning, expert mentorship, and real-world projects.
Phase 3: Internship and Placement Support
Students participate in 20 capstone projects and one client project, earning an internship certification. The Placement Assistance Team provides resume building, interview preparation, and job placement support.

Comprehensive Curriculum for Data Science Courses

The Certified Data Scientist Course in Agra encompasses a broad spectrum of subjects to provide a comprehensive understanding of the field. Key highlights include:
1. Python Programming: Master Python and libraries like NumPy, Pandas, and Matplotlib.
2. Machine Learning: Learn algorithms such as Support Vector Machines, Random Forest, and Gradient Boosting.
3. Data Visualization: Create insightful dashboards using Tableau and Power BI.
4. Big Data Tools: Hands-on training with PySpark, Hadoop, and Kafka.
5. Artificial Intelligence: Explore Deep Learning, TensorFlow, and NLP applications.

Specialized Data Science Certifications

In addition to its flagship course, DataMites offers specialized programs to meet diverse career goals:
1. Python for Data Science: A beginner-friendly course focused on programming.
2. Domain-Specific Certifications: Data science applications in HR, Finance, and Marketing.
3. Diploma in Data Science: An advanced program designed for high-level roles.

Tools and Technologies
Learners at DataMites gain proficiency in industry-relevant tools and technologies, including:
1. Programming Tools: Python, TensorFlow, Pandas.
2. Visualization Platforms: Tableau, Power BI, Advanced Excel.
3. Big Data Frameworks: PySpark, Hadoop, MongoDB.

Data Science Internships and Placement Support in Agra
DataMites emphasizes the importance of practical experience and provides data science courses in Agra and also data science courses in Agra with internships and data science courses in Agra placement assistance. The internship programs offer hands-on exposure to real-world challenges, while the Placement Assistance Team ensures that learners are job-ready. Graduates are prepared for roles such as:
1. Data Scientist
2. Machine Learning Engineer
3. Business Intelligence Analyst
4. Data Engineer

With its growing IT ecosystem and dynamic job market, Agra is an ideal destination for aspiring data scientists. By enrolling in DataMites’ data science course in Agra, learners gain access to world-class training, practical projects, and placement support. Whether you choose an online or offline training for data science courses in Agra, DataMites equips you with the skills and confidence to excel in this ever-evolving field.

The institute also provides a variety of courses such as data analytics, machine learning, Python programming,MLOps,  Artificial Intelligence, and data engineering. These courses are designed to meet the dynamic demands of the industry, setting you on the path to a successful data science career.  

Additionally, DataMites offers data science courses in Hyderabad, Bangalore, Chennai, Pune, and Mumbai, so you can choose the center that's most convenient for you. Start your journey with DataMites today and transform your career in data science. Visit our centers in Agra or explore our online programs to unlock your potential in the data-driven world. 

ABOUT DATAMITES DATA SCIENCE COURSE IN AGRA

Data science is an interdisciplinary field that involves extracting insights and knowledge from data through various techniques such as statistics, machine learning, and data visualization. It combines elements of mathematics, statistics, computer science, and domain expertise to analyze and interpret complex data sets, ultimately enabling data-driven decision-making.

Learning data science is crucial because it equips individuals with the skills and knowledge to extract valuable insights from vast amounts of data. With data being generated at an unprecedented rate, organizations across industries are increasingly relying on data science to make informed business decisions, optimize processes, and gain a competitive edge.

To become a data scientist, you need a combination of technical and soft skills. Technical skills include proficiency in programming languages (such as Python or R), statistical analysis, machine learning, data visualization, and database querying. Soft skills encompass critical thinking, problem-solving, communication, and domain knowledge in the area you wish to apply data science.

To learn data science effectively, it is recommended to follow a structured approach. Start with a strong foundation in mathematics and statistics, then learn programming languages commonly used in data science, such as Python or R. Gain hands-on experience by working on real-world projects, participate in online courses or bootcamps, and explore relevant books, tutorials, and resources. Continuous practice, staying updated with industry trends, and joining data science communities can also enhance your learning journey.

Data scientists often face challenges such as accessing and cleaning data, dealing with missing or inconsistent data, managing large and complex datasets, selecting appropriate algorithms for analysis, and interpreting the results accurately. They may also encounter challenges related to communication with non-technical stakeholders and keeping up with the rapid advancements in the field.

The cost of a data science course in Agra ranges from INR 40,000 to INR 50,000 depending on the institute, course duration, and curriculum.

The eligibility criteria for learning a data science course can vary depending on the institute or program. Generally, a strong foundation in mathematics and statistics is beneficial. Many data science courses are open to individuals with a background in computer science, engineering, or a related field. However, some courses may also accept candidates from diverse backgrounds who demonstrate an aptitude for data science.

The scope of data science is vast and expanding across various industries. With the increasing availability of data and the need to extract meaningful insights, data scientists are in high demand. They can find opportunities in sectors such as finance, healthcare, e-commerce, marketing, telecommunications, and many more. The scope includes roles such as data analysts, data scientists, machine learning engineers, and data engineers.

A data science certification can provide several benefits. It validates your knowledge and skills in data science, making you more competitive in the job market. It demonstrates your commitment to continuous learning and professional development. Certifications can also help you gain credibility with employers and increase your chances of securing data science-related roles or advancing in your career.

Yes, there is a significant demand for data science courses. As the importance of data-driven decision-making grows across industries, there is an increasing need for professionals with data science skills.

Yes, SQL (Structured Query Language) is an important skill for data scientists. It is commonly used to retrieve, manipulate, and analyze data stored in relational databases. SQL allows data scientists to extract relevant information, perform data transformations, and create new tables or views for analysis. Proficiency in SQL can greatly enhance a data scientist's ability to work with data efficiently.

The career outlook for a fresher in data science is promising. With the increasing demand for data-driven decision-making, there is a need for skilled data scientists. As a fresher, you can start your career as a data analyst, junior data scientist, or data engineer. With time and experience, you can progress to more senior roles and take on responsibilities such as developing machine learning models, leading data science projects, and making strategic data-driven decisions.

Several top companies across industries are actively hiring data science freshers. Some notable examples include technology giants like Google, Microsoft, Amazon, Facebook, and Apple. Additionally, consulting firms like Deloitte, Accenture, and McKinsey, as well as financial institutions, healthcare organizations, e-commerce companies, and startups, are also hiring data science talent.

Yes, statistics is a fundamental component of data science. Understanding statistical concepts and techniques is crucial for analyzing and interpreting data accurately. Data scientists use statistical methods to summarize and describe data, identify patterns and trends, test hypotheses, and make predictions. Proficiency in statistics enables data scientists to draw meaningful insights from data and make informed decisions.

DataMites offers a range of data science courses, including:

  • Data Science Foundation: An introductory course covering the basics of data science, including statistics, programming, and machine learning.
  • Certified Data Scientist: A comprehensive program covering various aspects of data science, including data preprocessing, exploratory data analysis, statistical modeling, machine learning algorithms, and data visualization.
  • Certified AI Engineer: A course focused on artificial intelligence (AI) and machine learning (ML) techniques, including deep learning, natural language processing, computer vision, and neural networks.
  • Big Data Engineering: A course that covers big data technologies like Hadoop, Spark, and NoSQL databases, along with data processing and storage techniques.

CDS can refer to multiple things in different contexts. In the context of data science, CDS stands for "Certified Data Scientist." It may refer to a certification offered by a particular organization or institute, validating the skills and knowledge of an individual in the field of data science. However, without specific information, it is challenging to provide a more precise answer.

View more

FAQ’S OF DATA SCIENCE TRAINING IN AGRA

The Data Science course offered by DataMites in Agra is a comprehensive program that encompasses essential topics, hands-on experience through real-world projects, and industry-recognized certifications. It is an excellent option for individuals who are looking to succeed and thrive in the field of Data Science.

The Certified Data Scientist Course provided by DataMites in Agra welcomes individuals who possess a solid background in mathematics and programming, as well as those with prior experience in statistics, engineering, or related disciplines. This inclusivity makes the program ideal for a diverse range of participants who aspire to build a successful career in the field of Data Science.

Opting for the data science course offered by DataMites in Agra can be advantageous due to its all-encompassing training, hands-on experience gained from real-world projects, and industry-acknowledged certifications. This course equips individuals with the essential skills and knowledge required to thrive in the data science industry.

The course spans over 8 months and includes 700 hours of learning, with an additional 120 hours of live online training.

Yes, after completion of the data science course in Agra, the students are certified with globally recognized IABAC certification which helps them during job and internship programs.

Upon course completion, DataMites provides dedicated support and guidance for placements through their Placement Assistance Team (PAT). This ensures that individuals receive comprehensive assistance in securing employment opportunities, enhancing their chances of finding suitable job placements.

DataMites offers a diverse range of data science courses in Agra, including Data Science Foundation, Data Science for Managers, Data Science Associate, Diploma in Data Science, Python for Data Science, Statistics for Data Science, Data Science Marketing, Data Science Operations, Data Science Retail, Data Science for HR, Data Science with Finance, and Data Science.

DataMites is renowned for its team of highly experienced educators in the field of data science. These instructors possess extensive expertise, along with the necessary qualifications and certifications. With their wealth of experience, they provide exceptional instruction, enabling students to gain a comprehensive understanding of the subject matter.

DataMites offers flexible learning options to cater to the preferences of students. They provide a variety of choices, including live online sessions, self-paced learning methods, and on-demand classroom training. This flexibility allows individuals to select the learning approach that best suits their needs and enables them to conveniently pursue their data science education.

DataMites offers an overview of its training approach and provides a complimentary demo class, allowing students to enhance their understanding of the training process and its components.

Learning Through Case Study Approach

Theory → Hands-on → Case Study → Project → Model Deployment

 

The payment mode available for the data science course in Agra through:

  • Cash
  • Net Banking
  • Check
  • Debit Card
  • Credit Card
  • PayPal
  • Visa
  • Master card
  • American Express

DataMites Data Science Course in Agra is available at different price points: INR 35,000 for live online training, INR 21,000 for blended learning, and INR 44,000 for on-demand classroom training.

Yes, To issue the participation certificate and book the certification exam, it is necessary to provide photo identification proofs such as a National ID card or a Driving license.

According to an Indeed report, the salary of data scientists in India ranges from INR 11,49,482 per year. 

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

DATA SCIENCE COURSE PROJECTS

DATA SCIENCE JOB INTERVIEW QUESTIONS

OTHER DATA SCIENCE TRAINING CITIES IN INDIA

Global DATA SCIENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog