Instructor Led Live Online
Self Learning + Live Mentoring
In - Person Classroom Training
The entire training includes real-world projects and highly valuable case studies.
IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.
MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python objects
• Python basic data types
• Number & Booleans, strings
• Arithmetic Operators
• Comparison Operators
• Assignment Operators
• Operator’s precedence and associativity
MODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement
• IF-ELSE
• NESTED IF
• Python Loops basics
• WHILE Statement
• FOR statements
• BREAK and CONTINUE statements
MODULE 3: PYTHON DATA STRUCTURES
• Basic data structure in python
• String object basics and inbuilt methods
• List: Object, methods, comprehensions
• Tuple: Object, methods, comprehensions
• Sets: Object, methods, comprehensions
• Dictionary: Object, methods, comprehensions
MODULE 4: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Iterators
• Generator functions
• Lambda functions
• Map, reduce, filter functions
MODULE 5: PYTHON NUMPY PACKAGE
• NumPy Introduction
• Array – Data Structure
• Core Numpy functions
• Matrix Operations
MODULE 6: PYTHON PANDAS PACKAGE
• Pandas functions
• Data Frame and Series – Data Structure
• Data munging with Pandas
• Imputation and outlier analysis
MODULE 1: DATA SCIENCE ESSENTIALS
• Introduction to Data Science
• Data Science Terminologies
• Classifications of Analytics
• Data Science Project workflow
MODULE 2: DATA ENGINEERING FOUNDATION
• Introduction to Data Engineering
• Data engineering importance
• Ecosystems of data engineering tools
• Core concepts of data engineering
MODULE 3: PYTHON FOR DATA SCIENCE
• Introduction to Python
• Python Data Types, Operators
• Flow Control statements, Functions
• Structured vs Unstructured Data
• Python Numpy package introduction
• Array Data Structures in Numpy
• Array operations and methods
• Python Pandas package introduction
• Data Structures : Series and DataFrame
• Pandas DataFrame key methods
MODULE 4: VISUALIZATION WITH PYTHON
• Visualization Packages (Matplotlib)
• Components Of A Plot, Sub-Plots
• Basic Plots: Line, Bar, Pie, Scatter
• Advanced Python Data Visualizations
MODULE 5: R LANGUAGE ESSENTIALS
• R Installation and Setup
• R STUDIO – R Development Env
• R language basics and data structures
• R data structures , control statements
MODULE 6: STATISTICS
• Descriptive And Inferential statistics
• Types Of Data, Sampling types
• Measures of Central Tendencies
• Data Variability: Standard Deviation
• Z-Score, Outliers, Normal Distribution
• Central Limit Theorem
• Histogram, Normality Tests
• Skewness & Kurtosis
• Understanding Hypothesis Testing
• P-Value Method, Types Of Errors
• T Distribution, One Sample T-Test
• Independent And Relational T Tests
• Direct And Indirect Correlation
• Regression Theory
MODULE 7: MACHINE LEARNING INTRODUCTION
• Machine Learning Introduction
• ML core concepts
• Unsupervised and Supervised Learning
• Clustering with K-Means
• Regression and Classification Models.
• Regression Algorithm: Linear Regression
• ML Model Evaluation
• Classification Algorithm: Logistic Regression
MODULE 1: MACHINE LEARNING INTRODUCTION
• What Is ML? ML Vs AI
• ML Workflow, Popular ML Algorithms
• Clustering, Classification, And Regression
• Supervised Vs Unsupervised
MODULE 2: ML ALGO: LINEAR REGRESSION
• Introduction to Linear Regression
• How it works: Regression and Best Fit Line
• Modeling and Evaluation in Python
MODULE 3: ML ALGO: LOGISTIC REGRESSION
• Introduction to Logistic Regression
• How it works: Classification & Sigmoid Curve
• Modeling and Evaluation in Python
MODULE 4: ML ALGO: KNN
• Introduction to KNN
• How It Works: Nearest Neighbor Concept
• Modeling and Evaluation in Python
MODULE 5: ML ALGO: K MEANS CLUSTERING
• Understanding Clustering (Unsupervised)
• K Means Algorithm
• How it works : K Means theory
• Modeling in Python
MODULE 6: PRINCIPLE COMPONENT ANALYSIS (PCA)
• Building Blocks Of PCA
• How it works: Finding Principal Components
• Modeling PCA in Python
MODULE 7: ML ALGO: DECISION TREE
• Random Forest Ensemble technique
• How it works: Bagging Theory
• Modeling and Evaluation in Python
MODULE 8: ML ALGO: NAÏVE BAYES
• Introduction to Naive Bayes
• How it works: Bayes' Theorem
• Naive Bayes For Text Classification
• Modeling and Evaluation in Python
MODULE 9: GRADIENT BOOSTING, XGBOOST
• Introduction to Boosting and XGBoost
• How it works: weak learners' concept
• Modeling and Evaluation of in Python
MODULE 10: ML ALGO: SUPPORT VECTOR MACHINE (SVM)
• Introduction to SVM
• How It Works: SVM Concept, Kernel Trick
• Modeling and Evaluation of SVM in Python
MODULE 11: ARTIFICIAL NEURAL NETWORK (ANN)
• Introduction to ANN
• How It Works: Back prop, Gradient Descent
• Modeling and Evaluation of ANN in Python
MODULE 12: ADVANCED ML CONCEPTS
• Adv Metrics (Roc_Auc, R2, Precision, Recall)
• K-Fold Cross-validation
• Grid And Randomized Search CV In Sklearn
• Imbalanced Data Set: Smote Technique
• Feature Selection Techniques
MODULE 1: TIME SERIES FORECASTING - ARIMA
• What is Time Series?
• Trend, Seasonality, cyclical and random
• Autoregressive Model (AR)
• Moving Average Model (MA)
• Stationarity of Time Series
• ARIMA Model
• Autocorrelation and AIC
MODULE 2: FEATURE ENGINEERING
• Introduction to Features Engineering
• Transforming Predictors
• Feature Selection methods
• Backward elimination technique
• Feature importance from ML modeling
MODULE 3: SENTIMENT ANALYSIS
• Introduction to Sentiment Analysis
• Python packages: TextBlob, NLTK
• Case study: Twitter Live Sentiment Analysis
MODULE 4: REGULAR EXPRESSIONS WITH PYTHON
• Regex Introduction
• Regex codes
• Text extraction with Python Regex
MODULE 5: ML MODEL DEPLOYMENT WITH FLASK
• Introduction to Flask
• URL and App routing
• Flask application – ML Model Deployment
MODULE 6: ADVANCED DATA ANALYSIS WITH MS EXCEL
• MS Excel core Functions
• Pivot Table
• Advanced Functions (VLOOKUP, INDIRECT..)
• Linear Regression with EXCEL
• Goal Seek Analysis
• Data Table
• Solving Data Equation with EXCEL
• Monte Carlo Simulation with MS EXCEL
MODULE 7: AWS CLOUD FOR DATA SCIENCE
• Introduction of cloud
• Difference between GCC, Azure, AWS
• AWS Service ( EC2 and S3 service)
• AWS Service (AMI), AWS Service (RDS)
• AWS Service (IAM), AWS (Athena service)
• AWS (EMR), AWS, AWS (Redshift)
• ML Modeling with AWS Sage Maker
MODULE 8: AZURE FOR DATA SCIENCE
• Introduction to AZURE ML studio
• Data Pipeline and ML modeling with Azure
MODULE 1: GIT INTRODUCTION
• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git Architecture
MODULE 2: GIT REPOSITORY and GitHub
• Git Repo Introduction
• Create New Repo with Init command
• Copying existing repo
• Git user and remote node
• Git Status and rebase
• Review Repo History
• GitHub Cloud Remote Repo
MODULE 3: COMMITS, PULL, FETCH AND PUSH
• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote Repo
MODULE 4: TAGGING, BRANCHING, AND MERGING
• Organize code with branches
• Checkout branch
• Merge branches
MODULE 5: UNDOING CHANGES
• Editing Commits
• Commit command Amend flag
• Git reset and revert
MODULE 6: GIT WITH GITHUB AND BITBUCKET
• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developers
• Bitbucket Git account
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics Introduction
MODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Mapping and reducing stages concepts
• Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort
• Hands-on Map Reduce task
MODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Spark Configuration
• Resilient distributed datasets (RDD)
• Working with RDDs in PySpark
• Aggregating Data with Pair RDDs
MODULE 4: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
• Working with Spark SQL Query Language
MODULE 5: MACHINE LEARNING WITH SPARK ML
• Introduction to MLlib Various ML algorithms supported by MLib
• ML model with Spark ML.
• Linear regression
• logistic regression
• Random forest
MODULE 6: KAFKA and Spark
• Kafka architecture
• Kafka workflow
• Configuring Kafka cluster
• Operations
MODULE 1: BUSINESS INTELLIGENCE INTRODUCTION
• What Is Business Intelligence (BI)?
• What Bi Is The Core Of Business Decisions?
• BI Evolution
• Business Intelligence Vs Business Analytics
• Data Driven Decisions With Bi Tools
• The Crisp-Dm Methodology
MODULE 2: BI WITH TABLEAU: INTRODUCTION
• The Tableau Interface
• Tableau Workbook, Sheets And Dashboards
• Filter Shelf, Rows And Columns
• Dimensions And Measures
• Distributing And Publishing
MODULE 3: TABLEAU: CONNECTING TO DATA SOURCE
• Connecting To Data File , Database Servers
• Managing Fields
• Managing Extracts
• Saving And Publishing Data Sources
• Data Prep With Text And Excel Files
• Join Types With Union
• Cross-Database Joins
• Data Blending
• Connecting To Pdfs
MODULE 4: TABLEAU: BUSINESS INSIGHTS
• Getting Started With Visual Analytics
• Drill Down And Hierarchies
• Sorting & Grouping
• Creating And Working Sets
• Using The Filter Shelf
• Interactive Filters
• Parameters
• The Formatting Pane
• Trend Lines & Reference Lines
• Forecasting
• Clustering
MODULE 5: DASHBOARDS, STORIES AND PAGES
• Dashboards And Stories Introduction
• Building A Dashboard
• Dashboard Objects
• Dashboard Formatting
• Dashboard Interactivity Using Actions
• Story Points
• Animation With Pages
MODULE 6: BI WITH POWER-BI
• Power BI basics
• Basics Visualizations
• Business Insights with Power BI
MODULE 1: DATABASE INTRODUCTION
• DATABASE Overview
• Key concepts of database management
• CRUD Operations
• Relational Database Management System
• RDBMS vs No-SQL (Document DB)
MODULE 2: SQL BASICS
• Introduction to Databases
• Introduction to SQL
• SQL Commands
• MY SQL workbench installation
• Comments
• import and export dataset
MODULE 3: DATA TYPES AND CONSTRAINTS
• Numeric, Character, date time data type
• Primary key, Foreign key, Not null
• Unique, Check, default, Auto increment
MODULE 4: DATABASES AND TABLES (MySQL)
• Create database
• Delete database
• Show and use databases
• Create table, Rename table
• Delete table, Delete table records
• Create new table from existing data types
• Insert into, Update records
• Alter table
MODULE 5: SQL JOINS
• Inner join
• Outer join
• Left join
• Right join
• Cross join
• Self join
MODULE 6: SQL COMMANDS AND CLAUSES
• Select, Select distinct
• Aliases, Where clause
• Relational operators, Logical
• Between, Order by, In
• Like, Limit, null/not null, group by
• Having, Sub queries
MODULE 7: DOCUMENT DB/NO-SQL DB
• Introduction of Document DB
• Document DB vs SQL DB
• Popular Document DBs
• MongoDB basics
• Data format and Key methods
• MongoDB data management
MODULE 1: ARTIFICIAL INTELLIGENCE OVERVIEW
• Evolution Of Human Intelligence
• What Is Artificial Intelligence?
• History Of Artificial Intelligence.
• Why Artificial Intelligence Now?
• Ai Terminologies
• Areas Of Artificial Intelligence
• Ai Vs Data Science Vs Machine Learning
MODULE 2: DEEP LEARNING INTRODUCTION
• Deep Neural Network
• Machine Learning vs Deep Learning
• Feature Learning in Deep Networks
• Applications of Deep Learning Networks
MODULE 3: TENSORFLOW FOUNDATION
• TensorFlow Installation and setup
• TensorFlow Structure and Modules
• Hands-On: ML modeling with TensorFlow
MODULE 4: COMPUTER VISION INTRODUCTION
• Image Basics
• Convolution Neural Network (CNN)
• Image Classification with CNN
• Hands-On: Cat vs Dogs Classification with CNN Network
MODULE 5: NATURAL LANGUAGE PROCESSING (NLP)
• NLP Introduction
• Bag of Words Models
• Word Embedding
• Language Modeling
• Hands-On: BERT Algorithm
MODULE 6: AI ETHICAL ISSUES AND CONCERNS
• Issues And Concerns Around Ai
• Ai And Ethical Concerns
• Ai And Bias
• Ai: Ethics, Bias, And Trust
Data science is the field that involves extracting insights and knowledge from data using various techniques such as statistical analysis, machine learning, and data visualization.
Learning data science is important as it enables individuals to make data-driven decisions, solve complex problems, and uncover valuable insights from large datasets, leading to improved business strategies and innovation.
Key skills required to become a data scientist include proficiency in programming languages like Python or R, knowledge of statistics and mathematics, data manipulation and analysis, machine learning, data visualization, and problem-solving abilities.
To effectively acquire knowledge in data science, individuals can pursue online courses, attend workshops and boot camps, engage in hands-on projects, participate in online communities and forums, and stay updated with the latest industry trends and research papers.
Typical challenges encountered by data scientists include data cleaning and preprocessing, handling large and complex datasets, selecting appropriate models and algorithms, dealing with missing or incomplete data, and interpreting and communicating results effectively.
The cost of a data science course in Gangtok can vary depending on the institution and program, but it generally ranges from INR 40,000 to INR 50,000.
Prerequisites for enrolling in a data science course may include a background in mathematics and statistics, basic programming skills, knowledge of data analysis tools, and a strong desire to learn and explore the field of data science.
There are diverse career opportunities in data science, including data analyst, data scientist, machine learning engineer, business analyst, data engineer, and data consultant, across industries such as finance, healthcare, e-commerce, marketing, and technology.
Obtaining certification in data science is significant as it provides validation of skills and knowledge, enhances job prospects and career advancement opportunities, and demonstrates a commitment to professional growth in the field.
Yes, there is a high demand for data science courses in the industry due to the increasing reliance on data-driven decision-making, the need for skilled professionals to extract insights from large datasets, and the growing adoption of artificial intelligence and machine learning technologies.
Python is recommended as one of the top programming languages for data science due to its versatility, rich ecosystem of libraries and frameworks (e.g., NumPy, Pandas, TensorFlow), and ease of use for data manipulation, analysis, and machine learning tasks.
While a background in statistics is beneficial for data science, it is not necessarily a strict requirement. Understanding statistical concepts and methods helps in interpreting data and building accurate models, but it can be learned along with other data science skills.
Python alone can suffice for data science as it provides a wide range of libraries and tools specifically designed for data analysis, machine learning, and visualization. However, knowledge of additional languages like R can also be advantageous in certain contexts.
SQL (Structured Query Language) is highly useful for data scientists as it allows efficient querying and manipulation of relational databases, which are commonly used to store structured data. Proficiency in SQL is beneficial for data retrieval and integration tasks.
While coding is an essential part of data science, the extent of coding involved can vary depending on the specific tasks and projects. Data scientists often need to write code for data preprocessing, modeling, and analysis, but the level of complexity may vary based on the project requirements.
DataMites in Gangtok stands out as an outstanding choice for individuals looking to pursue a Data Science course. It boasts several key advantages, including highly skilled instructors, a comprehensive curriculum that encompasses various data science subjects, an emphasis on practical learning with hands-on exercises, industry-relevant projects, and dedicated support in finding placement opportunities.
DataMites in Gangtok warmly welcomes individuals with a strong foundation in mathematics and programming, as well as those with prior experience in statistics, engineering, or related fields, to enrol in their Certified Data Scientist Course. This inclusive approach ensures that individuals from diverse backgrounds can pursue their career aspirations in the dynamic and ever-evolving field of Data Science.
Opting for the DataMites data science course in Gangtok is a wise choice due to its carefully designed curriculum, knowledgeable faculty, engaging hands-on learning opportunities, practical project assignments, and industry-focused training. This extensive program significantly improves your knowledge and skills in the field of data science, thereby enhancing your chances of securing rewarding employment opportunities.
The course has a duration of 8 months, spanning 700 learning hours, with a dedicated allocation of 120 hours for live online training.
Upon the successful completion of the data science course in Gangtok, students receive the highly prestigious IABAC certification, which holds considerable international recognition. This esteemed certification serves as a valuable credential, expanding employment prospects and facilitating participation in internship programs, thus opening a wide range of opportunities in the field of data science.
DataMites provides strong support and guidance for placements through their dedicated Placement Assistance Team (PAT) after the completion of the course. The PAT offers individualized assistance to individuals, ensuring they receive comprehensive support in finding appropriate job placements. This tailored support greatly improves employment prospects and opens up a wide range of opportunities in the dynamic field of data science.
DataMites in Gangtok provides a diverse selection of data science courses that encompass a broad range of topics. These courses include Data Science Foundation, Data Science for Managers, Data Science Associate, Diploma in Data Science, Python for Data Science, Statistics for Data Science, Data Science Marketing, Data Science Operations, Data Science Retail, Data Science for HR, Data Science with Finance, and Data Science.
DataMites is widely recognized for its outstanding team of industry-expert educators who possess deep expertise and extensive experience in the field of data science. These highly qualified instructors hold prestigious certifications and bring their vast knowledge to the classroom, delivering exceptional instruction. Under their guidance, students are empowered to develop a comprehensive understanding of the subject matter.
DataMites recognizes the diverse preferences of students and provides flexible learning options to accommodate their needs. They offer a variety of choices, including live online sessions, self-paced learning, and on-demand classroom training. This flexibility allows individuals to select the learning approach that best suits their requirements, making it convenient for them to pursue their data science education.
DataMites provides a detailed overview of their training approach, ensuring that students have a clear understanding of the training process and its components. Moreover, they offer a complimentary demo class, allowing individuals to fully grasp the training methodology. This enables prospective students to evaluate the quality and suitability of the training before making a commitment, empowering them to make an informed decision.
Learning Through Case Study Approach
Theory → Hands-on → Case Study → Project → Model Deployment
The payment mode available for the data science course in Gangtok through:
DataMites offers its Data Science Course in Gangtok at different price points, providing a range of options to cater to diverse preferences. These options include INR 35,000 for live online training, INR 21,000 for blended learning, and INR 44,000 for on-demand classroom training. This flexible pricing structure enables individuals to select the plan that fits their budget and preferred learning mode.
In order to receive the participation certificate and book the certification exam, it is essential to provide valid photo identification proofs, such as a National ID card or a Driver's license. These identification proofs play a crucial role in ensuring the authenticity and accuracy of the certification process.
The salary of data scientists in India ranges from INR 11,49,482 per year according to an Indeed report.
The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -
The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.
No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.