DATA SCIENCE CERTIFICATION AUTHORITIES

Data Science Course Features

DATA SCIENCE COURSE LEAD MENTORS

DATA SCIENCE COURSE FEE IN JODHPUR

Live Virtual

Instructor Led Live Online

110,000
70,623

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Live Online Training
  • 25 Capstone & 1 Client Project
  • 365 Days Flexi Pass + Cloud Lab
  • Internship + Job Assistance

Blended Learning

Self Learning + Live Mentoring

66,000
42,948

  • Self Learning + Live Mentoring
  • IABAC® & NASSCOM® Certification
  • 1 Year Access To Elearning
  • 25 Capstone & 1 Client Project
  • Job Assistance
  • 24*7 Leaner assistance and support

Classroom

In - Person Classroom Training

110,000
80,873

  • IABAC® & NASSCOM® Certification
  • 8-Month | 700 Learning Hours
  • 120-Hour Classroom Sessions
  • 25 Capstone & 1 Client Project
  • Cloud Lab Access
  • Internship + Job Assistance

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

Enquire Now

UPCOMING DATA SCIENCE ONLINE CLASSES IN JODHPUR

BEST DATA SCIENCE CERTIFICATIONS

The entire training includes real-world projects and highly valuable case studies.

IABAC® certification provides global recognition of the relevant skills, thereby opening opportunities across the world.

images not display images not display

WHY DATAMITES INSTITUTE FOR DATA SCIENCE COURSE

Why DataMites Infographic

SYLLABUS OF DATA SCIENCE COURSE IN JODHPUR

MODULE 1: DATA SCIENCE ESSENTIALS 

 • Introduction to Data Science
 • Evolution of Data Science
 • Big Data Vs Data Science
 • Data Science Terminologies
 • Data Science vs AI/Machine Learning
 • Data Science vs Analytics

MODULE 2: DATA SCIENCE DEMO

 • Business Requirement: Use Case
 • Data Preparation
 • Machine learning Model building
 • Prediction with ML model
 • Delivering Business Value.

MODULE 3: ANALYTICS CLASSIFICATION 

 • Types of Analytics
 • Descriptive Analytics
 • Diagnostic Analytics
 • Predictive Analytics
 • Prescriptive Analytics
 • EDA and insight gathering demo in Tableau

MODULE 4: DATA SCIENCE AND RELATED FIELDS

 • Introduction to AI
 • Introduction to Computer Vision
 • Introduction to Natural Language Processing
 • Introduction to Reinforcement Learning
 • Introduction to GAN
 • Introduction to Generative Passive Models

MODULE 5: DATA SCIENCE ROLES & WORKFLOW

 • Data Science Project workflow
 • Roles: Data Engineer, Data Scientist, ML Engineer and MLOps Engineer
 • Data Science Project stages.

MODULE 6: MACHINE LEARNING INTRODUCTION

 • What Is ML? ML Vs AI
 • ML Workflow, Popular ML Algorithms
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 7: DATA SCIENCE INDUSTRY APPLICATIONS

 • Data Science in Finance and Banking
 • Data Science in Retail
 • Data Science in Health Care
 • Data Science in Logistics and Supply Chain
 • Data Science in Technology Industry
 • Data Science in Manufacturing
 • Data Science in Agriculture

MODULE 1: PYTHON BASICS 

 • Introduction of python
 • Installation of Python and IDE
 • Python Variables
 • Python basic data types
 • Number & Booleans, strings
 • Arithmetic Operators
 • Comparison Operators
 • Assignment Operators

MODULE 2: PYTHON CONTROL STATEMENTS 

 • IF Conditional statement
 • IF-ELSE
 • NESTED IF
 • Python Loops basics
 • WHILE Statement
 • FOR statements
 • BREAK and CONTINUE statements

MODULE 3: PYTHON DATA STRUCTURES 

 • Basic data structure in python
 • Basics of List
 • List: Object, methods
 • Tuple: Object, methods
 • Sets: Object, methods
 • Dictionary: Object, methods

MODULE 4: PYTHON FUNCTIONS 

 • Functions basics
 • Function Parameter passing
 • Lambda functions
 • Map, reduce, filter functions

MODULE 1: OVERVIEW OF STATISTICS 

 • Introduction to Statistics
 • Descriptive And Inferential Statistics
 • Basic Terms Of Statistics
 • Types Of Data

MODULE 2: HARNESSING DATA 

 • Random Sampling
 • Sampling With Replacement And Without Replacement
 • Cochran's Minimum Sample Size
 • Types of Sampling
 • Simple Random Sampling
 • Stratified Random Sampling
 • Cluster Random Sampling
 • Systematic Random Sampling
 • Multi stage Sampling
 • Sampling Error
 • Methods Of Collecting Data

MODULE 3: EXPLORATORY DATA ANALYSIS 

 • Exploratory Data Analysis Introduction
 • Measures Of Central Tendencies: Mean,Median And Mode
 • Measures Of Central Tendencies: Range, Variance And Standard Deviation
 • Data Distribution Plot: Histogram
 • Normal Distribution & Properties
 • Z Value / Standard Value
 • Empirical Rule and Outliers
 • Central Limit Theorem
 • Normality Testing
 • Skewness & Kurtosis
 • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
 • Covariance & Correlation

MODULE 4: HYPOTHESIS TESTING 

 • Hypothesis Testing Introduction
 • P- Value, Critical Region
 • Types of Hypothesis Testing
 • Hypothesis Testing Errors : Type I And Type II
 • Two Sample Independent T-test
 • Two Sample Relation T-test
 • One Way Anova Test
 • Application of Hypothesis testing

 

MODULE 1: MACHINE LEARNING INTRODUCTION 

 • What Is ML? ML Vs AI
 • Clustering, Classification And Regression
 • Supervised Vs Unsupervised

MODULE 2:  PYTHON NUMPY  PACKAGE 

 • Introduction to Numpy Package
 • Array as Data Structure
 • Core Numpy functions
 • Matrix Operations, Broadcasting in Arrays

MODULE 3:  PYTHON PANDAS PACKAGE 

 • Introduction to Pandas package
 • Series in Pandas
 • Data Frame in Pandas
 • File Reading in Pandas
 • Data munging with Pandas

MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib

 • Visualization Packages (Matplotlib)
 • Components Of A Plot, Sub-Plots
 • Basic Plots: Line, Bar, Pie, Scatter

MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

 • Seaborn: Basic Plot
 • Advanced Python Data Visualizations

MODULE 6: ML ALGO: LINEAR REGRESSSION

 • Introduction to Linear Regression
 • How it works: Regression and Best Fit Line
 • Modeling and Evaluation in Python

MODULE 7: ML ALGO: LOGISTIC REGRESSION

 • Introduction to Logistic Regression
 • How it works: Classification & Sigmoid Curve
 • Modeling and Evaluation in Python

MODULE 8: ML ALGO: K MEANS CLUSTERING

 • Understanding Clustering (Unsupervised)
 • K Means Algorithm
 • How it works : K Means theory
 • Modeling in Python

MODULE 9: ML ALGO: KNN

 • Introduction to KNN
 • How It Works: Nearest Neighbor Concept
 • Modeling and Evaluation in Python

MODULE 1: FEATURE ENGINEERING 

 • Introduction to Feature Engineering
 • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
 • Handling Missing values, handling outliers
 • Creation of Pipeline
 • Use case for feature engineering

MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

 • Introduction to SVM
 • How It Works: SVM Concept, Kernel Trick
 • Modeling and Evaluation of SVM in Python

MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

 • Building Blocks Of PCA
 • How it works: Finding Principal Components
 • Modeling PCA in Python

MODULE 4:  ML ALGO: DECISION TREE 

 • Introduction to Decision Tree & Random Forest
 • How it works
 • Modeling and Evaluation in Python

MODULE 5: ENSEMBLE TECHNIQUES - BAGGING 

 • Introduction to Ensemble technique 
 • Bagging and How it works
 • Modeling and Evaluation in Python

MODULE 6: ML ALGO: NAÏVE BAYES

 • Introduction to Naive Bayes
 • How it works: Bayes' Theorem
 • Naive Bayes For Text Classification
 • Modeling and Evaluation in Python

MODULE 7: GRADIENT BOOSTING, XGBOOST

 • Introduction to Boosting and XGBoost
 • How it works?
 • Modeling and Evaluation of in Python

MODULE 1: TIME SERIES FORECASTING - ARIMA 

 • What is Time Series?
 • Trend, Seasonality, cyclical and random
 • Stationarity of Time Series
 • Autoregressive Model (AR)
 • Moving Average Model (MA)
 • ARIMA Model
 • Autocorrelation and AIC
 • Time Series Analysis in Python 

MODULE 2: SENTIMENT ANALYSIS 

 • Introduction to Sentiment Analysis
 • NLTK Package
 • Case study: Sentiment Analysis on Movie Reviews

MODULE 3: REGULAR EXPRESSIONS WITH PYTHON 

 • Regex Introduction
 • Regex codes
 • Text extraction with Python Regex

MODULE 4:  ML MODEL DEPLOYMENT WITH FLASK 

 • Introduction to Flask
 • URL and App routing
 • Flask application – ML Model deployment

MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL

 • MS Excel core Functions
 • Advanced Functions (VLOOKUP, INDIRECT..)
 • Linear Regression with EXCEL
 • Data Table
 • Goal Seek Analysis
 • Pivot Table
 • Solving Data Equation with EXCEL

MODULE 6:  AWS CLOUD FOR DATA SCIENCE

 • Introduction of cloud
 • Difference between GCC, Azure, AWS
 • AWS Service ( EC2 instance)

MODULE 7: AZURE FOR DATA SCIENCE

 • Introduction to AZURE ML studio
 • Data Pipeline
 • ML modeling with Azure

MODULE 8:  INTRODUCTION TO DEEP LEARNING

 • Introduction to Artificial Neural Network, Architecture
 • Artificial Neural Network in Python
 • Introduction to Convolutional Neural Network, Architecture
 • Convolutional Neural Network in Python

MODULE 1: DATABASE INTRODUCTION 

 • DATABASE Overview
 • Key concepts of database management
 • Relational Database Management System
 • CRUD operations

MODULE 2:  SQL BASICS

 • Introduction to Databases
 • Introduction to SQL
 • SQL Commands
 • MY SQL workbench installation

MODULE 3: DATA TYPES AND CONSTRAINTS 

 • Numeric, Character, date time data type
 • Primary key, Foreign key, Not null
 • Unique, Check, default, Auto increment

MODULE 4: DATABASES AND TABLES (MySQL) 

 • Create database
 • Delete database
 • Show and use databases
 • Create table, Rename table
 • Delete table, Delete table records
 • Create new table from existing data types
 • Insert into, Update records
 • Alter table

MODULE 5: SQL JOINS 

 • Inner Join, Outer Join
 • Left Join, Right Join
 • Self Join, Cross join
 • Windows function: Over, Partition, Rank

MODULE 6: SQL COMMANDS AND CLAUSES 

 • Select, Select distinct
 • Aliases, Where clause
 • Relational operators, Logical
 • Between, Order by, In
 • Like, Limit, null/not null, group by
 • Having, Sub queries

MODULE 7 : DOCUMENT DB/NO-SQL DB 

 • Introduction of Document DB
 • Document DB vs SQL DB
 • Popular Document DBs
 • MongoDB basics
 • Data format and Key methods

MODULE 1: GIT  INTRODUCTION 

 • Purpose of Version Control
 • Popular Version control tools
 • Git Distribution Version Control
 • Terminologies
 • Git Workflow
 • Git Architecture

MODULE 2: GIT REPOSITORY and GitHub 

 • Git Repo Introduction
 • Create New Repo with Init command
 • Git Essentials: Copy & User Setup
 • Mastering Git and GitHub

MODULE 3: COMMITS, PULL, FETCH AND PUSH 

 • Code Commits
 • Pull, Fetch and Conflicts resolution
 • Pushing to Remote Repo

MODULE 4: TAGGING, BRANCHING AND MERGING 

 • Organize code with branches
 • Checkout branch
 • Merge branches
 • Editing Commits
 • Commit command Amend flag
 • Git reset and revert

MODULE 5: GIT WITH GITHUB AND BITBUCKET

 • Creating GitHub Account
 • Local and Remote Repo
 • Collaborating with other developers

MODULE 1: BIG DATA INTRODUCTION 

 • Big Data Overview
 • Five Vs of Big Data
 • What is Big Data and Hadoop
 • Introduction to Hadoop
 • Components of Hadoop Ecosystem
 • Big Data Analytics Introduction

MODULE 2 : HDFS AND MAP REDUCE 

 • HDFS – Big Data Storage
 • Distributed Processing with Map Reduce
 • Mapping and reducing stages concepts
 • Key Terms: Output Format, Partitioners,
 • Combiners, Shuffle, and Sort

MODULE 3: PYSPARK FOUNDATION 

 • PySpark Introduction
 • Spark Configuration
 • Resilient distributed datasets (RDD)
 • Working with RDDs in PySpark
 • Aggregating Data with Pair RDDs

MODULE 4: SPARK SQL and HADOOP HIVE 

 • Introducing Spark SQL
 • Spark SQL vs Hadoop Hive

MODULE 1: TABLEAU FUNDAMENTALS 

 • Introduction to Business Intelligence & Introduction to Tableau
 • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
 • Bar chart, Tree Map, Line Chart
 • Area chart, Combination Charts, Map
 • Dashboards creation, Quick Filters
 • Create Table Calculations
 • Create Calculated Fields
 • Create Custom Hierarchies

MODULE 2:  POWER-BI BASICS

 • Power BI Introduction 
 • Basics Visualizations
 • Dashboard Creation
 • Basic Data Cleaning
 • Basic DAX FUNCTION

MODULE 3 : DATA TRANSFORMATION TECHNIQUES 

 • Exploring Query Editor
 • Data Cleansing and Manipulation:
 • Creating Our Initial Project File
 • Connecting to Our Data Source
 • Editing Rows
 • Changing Data Types
 • Replacing Values

MODULE 4: CONNECTING TO VARIOUS DATA SOURCES 

• Connecting to a CSV File
 • Connecting to a Webpage
 • Extracting Characters
 • Splitting and Merging Columns
 • Creating Conditional Columns
 • Creating Columns from Examples
 • Create Data Model

OFFERED DATA SCIENCE COURSES IN JODHPUR

DATA SCIENCE COURSE REVIEWS

ABOUT DATA SCIENTIST TRAINING IN JODHPUR

The data science course in Jodhpur offers comprehensive learning about data analysis and machine learning that empowers you with the skills to excel in this dynamic field. As indicated in the Mordor Intelligence report, the global data science market is estimated to achieve a substantial market size of USD$ 230.80 Billion by the year 2026. This growth projection signifies an impressive compound annual growth rate (CAGR) of 39.7%.

DataMites, an esteemed institute recognized globally, is renowned for its comprehensive Data Science training in Jodhpur. Their curriculum encompasses prestigious courses in artificial intelligence, machine learning, data analytics, and deep learning. Students have the flexibility to attend personalised on-demand data science offline classes in Jodhpur, tailored to their specific needs. The program extends over 8 months, providing 700 hours of learning, including 120 hours of live online training. DataMites takes pride in offering IABAC-certified courses, ensuring a valuable impact on learners globally. Furthermore, the institute provides internship and job assistance, enhancing career prospects for aspiring data scientists. Elevate your learning experience with DataMites' exclusive Certified Data Scientist Course in Jodhpur.

DataMites provides key features for Data Science Training in Jodhpur that include:

  1. Faculty and Ashok Veda as Lead Mentor
  2. Course Curriculum
  3. Global Certification
  4. Resume PreparationFlexible Training Modes
  5. Hands-on Projects
  6. Intensive live online training
  7. Hardcopy Learning materials and books
  8. DataMites Exclusive Learning Community
  9. Affordable pricing and Scholarships.
  10. Live client project
  11. 24-hour job and placement assistance 

Jodhpur, known as the "Sun City," is a historic city in Rajasthan, India, famous for its majestic palaces, and stunning desert landscape. With its growing technology sector, Jodhpur offers exciting opportunities in the field of data science, supported by reputable data science institutes in Jodhpur that equip aspiring professionals with the necessary skills to excel in this data-driven domain.  The salary of a data scientist in India ranges from INR 11,30,556 per year according to a Glassdoor report. DataMites offers online data science training in Jodhpur with a comprehensive syllabus, study material, job training, and mock tests. At DataMites, the students get data science certification in Jodhpur after the completion of the training program. Embark on a transformative journey in the dynamic field of Data Science Training Course in Jodhpur by joining us at DataMites. Discover your untapped potential and seize exciting opportunities in this rapidly evolving domain.

Along with the data science courses, DataMites also provides data engineer, machine learning, artificial intelligence, deep learning, mlops, AI expert, tableau, IoT, data analyst, data analytics training, r programming and python courses in Jodhpur.

ABOUT DATAMITES DATA SCIENCE COURSE IN JODHPUR

Data science is a multidisciplinary field that involves extracting knowledge and insights from structured and unstructured data using various scientific methods, algorithms, and tools. It combines elements of statistics, mathematics, computer science, and domain expertise to uncover patterns, make predictions, and drive data-driven decision-making.

Learning data science is crucial in today's data-driven world because it equips individuals with the skills to analyze and interpret vast amounts of data. By leveraging data science techniques, organizations can gain valuable insights, improve efficiency, make informed decisions, and gain a competitive advantage in their respective industries.

To become a data scientist, several skills are essential, including:

  • Proficiency in programming languages such as Python or R.
  • Strong knowledge of statistics and mathematics.
  • Data manipulation and analysis using tools like SQL and Pandas.
  • Machine learning techniques and algorithms.
  • Data visualization and storytelling using tools like Tableau or Matplotlib.

To learn data science effectively, you can follow these steps:

  • Gain a solid foundation in mathematics, statistics, and programming.
  • Take online courses or enrol in a data science program.
  • Practice by working on real-world projects and datasets.
  • Join data science communities and participate in online forums.
  • Read books, research papers, and articles related to data science.

Data scientists often face several challenges, including:

  • Data quality issues and data cleaning.
  • Dealing with large and complex datasets.
  • Choosing the appropriate algorithms and models.
  • Interpretation and communication of results to non-technical stakeholders.
  • Ethical considerations and maintaining data privacy.

The cost of a data science course in Jodhpur ranges from INR 40,000 to INR 50,000 depending on the institute, course duration, and curriculum.

The eligibility criteria for data science courses may vary depending on the institution or program. However, common requirements may include:

  • A bachelor's degree in a relevant field like computer science, mathematics, or engineering.
  • Basic knowledge of mathematics, statistics, and programming.
  • Proficiency in a programming language like Python or R.

Data science has a vast scope across various industries and sectors. As businesses continue to generate massive amounts of data, there is an increasing demand for skilled data scientists. Data science can be applied in fields such as finance, healthcare, marketing, e-commerce, manufacturing, and more. It offers opportunities for extracting insights, making predictions, improving processes, and driving innovation.

Obtaining a certification in data science is important as it provides formal recognition of one's skills and knowledge in the field, enhancing credibility and employability in the competitive job market.

Yes, there is a high demand for data science courses due to the increasing reliance on data-driven decision-making in various industries, leading to a growing need for skilled professionals who can effectively analyze and interpret complex data sets.

Yes, SQL is a necessary skill for data science as it is widely used for data extraction, manipulation, and analysis from relational databases.

Entry-level professionals in data science have promising career prospects, with opportunities to work as data analysts, data engineers, machine learning engineers, or data scientists in various industries.

Top companies hiring freshers in data science include Google, Microsoft, Amazon, Facebook, IBM, and many more, as they recognize the value of data-driven decision-making.

A solid understanding of statistics is essential for data science as it forms the foundation for data analysis, modeling, and interpretation, enabling meaningful insights to be derived from data.

Yes, data science involves a significant amount of math, including statistics, linear algebra, probability, and calculus, as these concepts are fundamental for data analysis, modeling, and machine learning algorithms.

View more

FAQ’S OF DATA SCIENCE TRAINING IN JODHPUR

DataMites is a reputable institute known for its comprehensive data science courses, experienced faculty, hands-on training, industry-relevant curriculum, and placement assistance, making it a reliable choice for pursuing a data science course.

The eligibility criteria for enrolling in the Certified Data Scientist Course offered by DataMites in Jodhpur may vary, but typically it requires a bachelor's degree in any discipline with a basic understanding of mathematics and statistics. However, it's recommended to contact DataMites directly for the most accurate and up-to-date information regarding eligibility.

Reasons to consider a data science course offered by DataMites in Jodhpur include their strong industry connections, practical approach to learning, comprehensive curriculum covering various data science concepts and tools, and the opportunity to gain practical experience through real-world projects and case studies. Additionally, their track record of successful placements and career support services adds value to the overall learning experience.

The duration of the course is of 8 months with 700 learning hours, including 120 hours of live online training.

Upon successful completion of the data science course in Jodhpur, students are awarded the prestigious IABAC certification, which is globally recognized. This certification greatly enhances their prospects during job applications and internship programs, providing them with a competitive edge in the industry.

After completing the course, DataMites offers dedicated support and guidance for placements through their Placement Assistance Team (PAT). This ensures that individuals receive comprehensive assistance in finding suitable job placements, increasing their chances of securing employment opportunities.

DataMites in Jodhpur provides a wide array of data science courses, covering a diverse range of topics such as Data Science Foundation, Data Science for Managers, Data Science Associate, Diploma in Data Science, Python for Data Science, Statistics for Data Science, Data Science Marketing, Data Science Operations, Data Science Retail, Data Science for HR, Data Science with Finance, and Data Science. This extensive selection allows individuals to choose a course that aligns with their specific interests and career goals.

DataMites is widely recognized for its team of exceptionally experienced educators specializing in data science. These instructors possess extensive expertise, relevant qualifications, and certifications, allowing them to deliver exceptional instruction. Through their wealth of experience, students are equipped with a comprehensive understanding of the subject matter.

DataMites understands the diverse preferences of students and offers flexible learning options to cater to their needs. They provide a range of choices, such as live online sessions, self-paced learning methods, and on-demand classroom training. This flexibility empowers individuals to select the learning approach that aligns with their preferences and enables them to conveniently pursue their data science education.

DataMites provides a comprehensive training approach, which is accompanied by a complimentary demo class. This demo class enables students to improve their understanding of the training process and gain insights into its various components.

Learning Through Case Study Approach

Theory → Hands-on → Case Study → Project → Model Deployment

The payment mode available for the data science course in Jodhpur through:

  • Cash
  • Net Banking
  • Check
  • Debit Card
  • Credit Card
  • PayPal
  • Visa
  • Master card
  • American Express

The DataMites Data Science Course in Jodhpur offers flexible pricing options. The course is available at different price points: INR 35,000 for live online training, INR 21,000 for blended learning, and INR 44,000 for on-demand classroom training.

In order to receive the participation certificate and book the certification exam, it is required to submit valid photo identification proofs such as a National ID card or a Driving license.

The salary of a data scientist in India ranges from INR 11,30,556 per year according to a Glassdoor report.

The DataMites Placement Assistance Team(PAT) facilitates the aspirants in taking all the necessary steps in starting their career in Data Science. Some of the services provided by PAT are: -

  • 1. Job connect
  • 2. Resume Building
  • 3. Mock interview with industry experts
  • 4. Interview questions

The DataMites Placement Assistance Team(PAT) conducts sessions on career mentoring for the aspirants with a view of helping them realize the purpose they have to serve when they step into the corporate world. The students are guided by industry experts about the various possibilities in the Data Science career, this will help the aspirants to draw a clear picture of the career options available. Also, they will be made knowledgeable about the various obstacles they are likely to face as a fresher in the field, and how they can tackle.

No, PAT does not promise a job, but it helps the aspirants to build the required potential needed in landing a career. The aspirants can capitalize on the acquired skills, in the long run, to a successful career in Data Science.

View more

DATA SCIENCE COURSE PROJECTS

DATA SCIENCE JOB INTERVIEW QUESTIONS

OTHER DATA SCIENCE TRAINING CITIES IN INDIA

Global DATA SCIENCE COURSES Countries

popular career ORIENTED COURSES

DATAMITES POPULAR COURSES


HELPFUL RESOURCES - DataMites Official Blog